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Abstract

Wild passerine birds may serve as environmental reservoirs and as vectors for the long-distance dispersal of
microorganisms and resistance determinants. However, there is no much knowledge on pathogenic bacteria in wild
birds in Iran. The present study aimed to analyze antibiotic resistance in wild passerine birds collected from the
northeast region of Iran as the rich breeding bird fauna with a special focus on Escherichia coli virulence, integron,
and phylogenetic groups. A total of 326 isolates were collected and identified from the cloaca of wild birds using a
swab. The results showed a high percentage of resistance to tetracycline (45.8%) and ampicillin (26.7%). The
resistance genes, ftet(A), tet(B), tet(M), and tef(L) were detected in tetracycline-resistant isolates, while the blargy
gene was the most prevalent in ampicillin-resistant isolates (38.6%). Out of the 129 E. coli isolates examined, 99
isolates were found to have virulence gene, with the highest prevalence of the fimbriae (fimH) gene (22.4%).
Additionally, the E. coli strains were most often classified into phylogenetic groups B1 (48.8%) followed by B2
(19.3%). Also, the highest average frequency of class 1 integron was detected among our isolates. Results indicated
that wild birds are reservoirs of multidrug resistance and virulence genes that may have the potential to be transferred
to other organisms, including humans.
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Introduction

Wild birds can serve as reservoirs of pathogens that may have the potential to affect domestic birds, animals, and
humans (Franklin et al. 2020, Gargiulo et al. 2018, Jones&James Reynolds 2008). Due to their ability to move across
various distances, from local movements to long-distance migrations, across national and intercontinental borders,
they can act as dispersers of pathogenic microorganisms on both spatial and temporal scales (Ahlstrom et al. 2021,
Altizer et al. 2011, Benskin et al. 2009, Wang et al. 2017). Furthermore, many birds including several common
passerine species such as house sparrow, Passer domesticus, and barn swallow, Hirundorustica, have adapted to
farm environments where their proximity to domestic animals may also play a role in human disease (Atterby et al.
2016, Capua&Alexander 2002, Carter et al. 2018, Marzluff 2001, Tsiodras et al. 2008).

Among the Enterobacteriaceae family, Escherichia coli, Yersinia spp., Klebsiella spp., Salmonella spp., and some
species of Enterobacter genus such as E. aerogenes and E. cloacae are examples of established and putative
pathogenic bacteria (Botti et al. 2013, Davin-Regli 2015, Droual et al. 1997, Fu et al. 2021, Islam et al. 2021, Pasquali
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et al. 2014). These bacteria have been used for antibiotic analysis in previous studies (Fu et al. 2021, Janecko et al.
2018, Kruse et al. 2004, Liao et al. 2019, S&enz et al. 2004).

Antimicrobial resistance is a significant public health concern and the Enterobacteriaceae family has experienced a
notable increase in resistance in recent years greatly due to the extensive use of antibiotics in the treatment of
humans, animals, and agriculture. This has, lead to the choice and universal spread of resistant profiles (Ojer-Usoz et
al. 2017, Organization 2014, Roca et al. 2015, Shaikh et al. 2015).

Antimicrobial resistance genes may transfer among various organisms through various pathways. Bacteria with
antibiotic resistance may disseminate into the environment through contact between wild birds and farm animals,
eventually reaching animals that have not previously been exposed to antibiotic-resistant bacteria (Marinho et al.
2013, Poirel et al. 2012). Therefore, a comprehensive study is required to find out the emergence and dissemination of
antibiotic resistance genes across different sectors.

Wild birds as biological indicators of environmental pollution have an important role in widespread dissemination and
changing the number of antibiotic resistance genes in humans and livestock due to their migratory lifestyle (Allen et al.
2010, Lin et al. 2020, Wang et al. 2017).

Many studies have investigated the patterns of bacterial transfer from birds to other organisms and the environment
(Hird et al. 2015, Zhao et al. 2017). Among the various bacteria, Escherichia coli is an important common bacteria
found in both birds and humans as part of the intestinal microflora in birds (Rahman et al. 2020). Avian pathogenic E.
coli (APEC) can cause disease in birds and the presence of the disease is associated with several virulence genes,
including fim C, fimH, and pap C (levy et al. 2020, Johnson et al. 2008). These virulence factors are found on bacterial
chromosome and plasmids and transferred horizontally or vertically between bacteria (Piatti et al. 2008). Horizontal
gene transfer is a major route for the transmission of antibiotic resistance genes by bacteria, which is transferred by
mobile genetic elements (MGEs) such as integrons, transposons, and plasmids. Integron, as a type of MGE, can
integrate multiple drug resistance gene cassettes to confer multiple drug resistance. Integrons play an important role in
the spread of drug resistance in bacteria, in particular among gram-negative bacteria (Rowe-Magnus et al. 2002).

Based on phylogenetic groups, Escherichia coli is divided into eight phylogenetic groups: A, B1, B2, C, D, E, F, and
clade 1 . The majority of EXPEC strains are related to the B2 and D groups whereas most intestinal infection strains
belong usually to other groups (Krawczyk et al. 2015, Yair&Gophna 2018).

Most studies of putative zoonotic bacteria in birds have focused on Europe and North America, with fewer studies
from elsewhere, including important biodiversity areas in the Middle East and Asia. Iran, with its rich breeding bird
fauna and hosting migratory and wintering bird populations emanating from areas of northern Eurasia, serves as a
bridge between the Palearctic, Oriental, and Afrotropical regions, making it an important area for avifauna exchanging
(Aliabadian et al. 2005).

In light of this, the objective of this study was to investigate the presence of bacteria from the Enterobacteriaceae
family, antimicrobial-resistant bacteria, and corresponding resistance genes in isolates obtained from wild birds in
Iran, with a particular focus on E. coli virulence and phylogenetic groups.

Materials and Methods

The isolation of bacteria

A total of 184 cloacal samples were collected from wild birds from June to September in both 2018 and 2019. All
sampled birds were captured using two mist nets from nine farms, six residential areas, and 21 agricultural field
locations in northeast Iran. Swabs were put in Amies transport medium (Difco Co., Italy) and kept cool in an icebox
until they were transferred to the laboratory. All sampled birds were released back into the wild after sampling.

For bacterial isolation, the swabs were placed in nutrient broth and subsequently incubated at 37°C for 24h. The

cultures were then streaked onto MacConkey agar (Difco Co., ltaly) and Eosin Methylene Blue (EMB) agar and

incubated at 37°C for 18-24h. Target gram-negative colonies were plated on Hekton enteric agar to identify
Salmonella spp., and Shigella spp., colonies. Furthermore, Gram staining and cell morphology were used to confirm

pure colonies . Microgen™ kit was performed to identify bacteria using 122 Microgen Identification System (MID-60)

software. The bacteria isolates were stored with glycerol at -80°C.
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Antimicrobial susceptibility testing and detection of resistance genes

The antibiotic susceptibility of the isolates was determined using the disk diffusion method following the guidelines of
the Clinical and Laboratory Standards Institute (CLSI) (Clinical&Institute 2017). The following 15 antibiotics commonly
used in human and veterinary medicine, were tested: ampicillin (10 mg), amoxicillin (20 mg), streptomycin (10 mg),
cefoxitin (30 mg), cefotaxime (30 mg), ceftazidime (30 mg), gentamicin (10 mg), amikacin (30 mg), nalidixic acid (30
mg), ciprofloxacin (5 mg), trimethoprim/sulfamethoxazole (SXT) (1.25 mg+23.75 mg), imipenem (10 mg), kanamycin,
tetracycline (30 mg) and chloramphenicol (30 mg) (Ferraro 2001).

Isolates resistant to one or more antibiotics were chosen for further analysis. All resistant isolates were analyzed by
polymerase chain reaction (PCR ) to identify the following resistance genes: tet(A), tet(B), tet(M), tet(L), tet(C), te(D),
and tet(E) for tetracycline-resistant isolates, and blargy, blagyyand blagry genes for ampicillin-resistant isolates, as
previously recommended (Santos et al. 2013, Sarker et al. 2019).

Virulence genes, phylogenetic groups and integrons

In E. coliisolates, we further identified some known virulence genes. DNA extraction was carried out using the boiling
method and then, virulence genes, haemolysin (hlyA), fimbriae (fimH), afimbrial adhesion(afa), cytotoxicnecrotizing
factor type 1 (cnf-1), aerolysin (aer) and pyelonephritis-associated pili C (pap C) were detected by PCR (Allami et al.
2022). The PCR products were assayed using 1% agarose electrophoresis gel.

The E. coli strains were tested to determine phylogenetic groups based on the Clermont method. The multiplex PCR
method was performed as described before (Clermont et al. 2013, Lin et al. 2020). The PCR products were classified
into one of the eight major E. coli phylogenetic lineages: A, B1, B2, C, D, E, F, and clade 1 (Nagachinta&Chen 2009).
The primers used are shown in the table I. Also, the E. coli strains were screened to determine the prevalence of class
I, I, and 1l integron genes (Cocchi et al. 2007, Rehman et al. 2017).

Primer Primer sequence size PCR programs m- PCR 25 Reference
name
Fimh F.TGCAGAACGAT 508 1 cycle: 9 pl 2x PCR Master MIX Red (lee et al, 2016)
AAGCCGTGG 95°C: 5min 1 pl of each primers F& R
R:GCAGTCACCTGC 30 cycle: 2 ul DNA template
CCTCCGGTA 94°C: 1 min
afa F-GCTGGGCAGCAA [ 750 | 62°C-30s Sawma_Aouad et al., 2009)
ACTGATAACTCTC 72°C: 1 min
R:CATCAAGCTGTT 1 cycle:
TGTTCGTCCGCCG 72°C: 10 min
hiyA F: AACAAGGATAAG 1177 Sawma_Aouad et al., 2009)
CACTGTTCTGGCT
R:ACCATATAAGCG
GTCATTCCCGTCA
PapC F-GTGGCAGTATGA 200 1 cycle 9 ul 2x PCR Master MIX Red (lee et al. 2016)
GTAATGACCGTTA 95 °C: 5 min 1 pl of each pnmers F& R
30 cycle 2 ul DNA template
94°C: 1 min
Cnfl F:AAGATGGAGTTT 498 60°C- 303 Sawma_Aouad et al., 2009)
CCTATGCAGGAG 72°C: 45 min
R:CATTCAGAGTCC 1 cvel
TGCCCTCATTATT 72°C- 5 min
aer F-TACCGGATTGTC 602 Sawma_Aouad et al., 2009)
ATATGCAGACCGT
R: AATATCTTCCTC
CAGTCCGGAGAAG
Chu A F-GACGAACCAACG 279 1 cycle: 10 pl 2x PCR Master MIX Red Miranda-Estrada et al 2017
GTCAGGAT 94 °C: 4 min 1 pl of each ChuA and YjaA
R-TGCCGCCAGTAC 30 cycle primers F& R
CAAAGACA 94°C: 30s 1.5 ul of each TspE4. C2 primers
55°C- 30s F& R2 ul DNA template
yiaA F- TGAAGIGICAGG | 211 | 72°C:30s Miranda-Estrada et al 2017
AGACGCTG 1 eyl
R: ATGGAGAATGCG 72°C: 7 mun
TTCCTCAAC
IspE4.C2 F: GAGTAATGTCGG 152 Miranda-Estrada et al 2017
GGCATTICA
R: CGCGCCAACAAA
GTATTACG

Table I. Primer pairs used.
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Results

Bacteria isolation

Bacteria were isolated from 171 out of the 184 sampled passerine birds tested (92.9%). E. coli was the most
abundant isolated bacterium, isolated from 129 birds, followed by the Enterobacter genus, which was found in 99
sampled birds. The prevalence of other isolated bacterial species was as follows: 52 (16.3%)Serratiaspp., 16 (8.6%)
Hafnia spp., 15 (5.9%) Klebsiella spp., 6 (3.2%) Salmonella spp., and 6 (3.2%) Proteus spp., (Table I1).

Bacteria isolated Tsolates from each bird family
Passendae Frngllidae Hirundimdae Motacillidae Muscicapidae Corvidae Alaudidae Embenzidae Pandae Sturmidae Sylvudae Turdidae Total
n=63 (%) =12 (%) =2 (%) n=13 (%) n=7 (%) n=3 (%) =3 =2 (%) =13 (%) n=7 (%) =53 (%) =6 (%) =184 (%)
(%)
47 (74.6) 5(41.6) 0(0) 9(69.2) 3(428) 3 (100) 1(333) 0{0) 5(384) 4(57.1) 48 (90.5) 5(833) 129 (70.1)
43 (682) 3(83) 2(66.6) 3(0) 3(285) 1(50) 1(333) 2(0) 5(7.6) 7(142) 25 (20.7) 4(333) 99(21.7)
5(79) 3(25.0) 1(333) 1(7.6) 0(0) 2 (100) 1(333) 0(0) 0(0) 0(0) 2(3.7) 1(16.6) 16(8.6)
Hafnia 18 (17.4) 7(25.0) 2(0) 6(46.1) 1(0) 0(0) 1@ 1(0) 3(23.0) 3(28.5) 10 (9.4) 0(0) 52(163)
3(47) 1(83) 0(0) 0(0) 0(0) 1(50) 0(0) 0(0) 0(0) 0(0) 0(0) 1(16.6) 6(32)
6(63) 0(0) 0(0) 2(7.6) 1(142) 1(50) 0(0) 1(50) 0(0) 1(142) 337 0(0) 15(59
1(1.5) 1(83) 0(0) 2(153) 0(0) 1(50) 0(0} 0{0) 0(0) 1(142) 0(0) 0(0) 6(32)
63 (100) 10(83.3) 2(66.6) 13 (100) 5(714) 3(100) 2(66.6) 2(100) 11 (84.6) 7 (100) 48 (90.5) 6 (100) 171 (92.9)
Enterobacteriaceae

Table Il. Prevalence of Enterobacteriaceae in wild passerine birds in the north-east of Iran.

Antimicrobial resistance

The results of the observed resistance phenotype are summarized in Table Ill. Generally, resistance to tetracycline
was the most prevalent (45.8%) among all bacterial genera, followed by resistance to ampicillin (26.7%). All isolates
were susceptible to cefotaxime, imipenem, and cefixime (Table Ill). Overall, multidrug resistance (MDR) to three or
more antibiotics was observed in E. coli, Enterobacter spp., Serratia spp., and Klebsiella spp., isolates with 34%,
20%, 8%, and 2%, respectively. None of the Hafnia spp., Salmonella spp., and Proteus spp., isolates were multiple
drug resistant. The presence of specific antibiotic-resistance genes was assayed by PCR. The rate of antibiotic
resistance genes in all isolates is shown in Table IV. Among tetracycline-resistant isolates, the presence of the tei(B)
was detected in 56 isolates, tef(A) gene in 37 isolates, tef(M) gene in 14 isolates, and tef(L) gene in two isolates.
Combinations of two tetracycline genes were detected in 20 isolates. The highest percentage of tetracycline
resistance genes was detected in E. coliisolates (97.7 %) (Table IV).

Antimicrobial agent Number and percentage of antimicrobial resistance distributed by isolates

E, coli Enterobacter Hafhnia Serratia Salmonella Klebsiella Proteus Total

n=129 n=99 n=16 n=52 n=6 =15 n=6 n=329

(%) (%) (%) (%) (%) (%) (%) (%)
Amikacin 0(0) 0(0) 1(6.2) 5(9.6) 0(0) 1(6.6) 0(0) 7(2.12)
Amoxicillin 9(6.9) 2(2.0) 1(6.2) 10 (19.2) 0(0) 3(20.0) 3(50) 28 (8.5)
Chloramphenicol 2(1.5) 0(0) 0(0) 3(5.7) 0(0) 0(0) 0(0) 5(1.5)
Cefotaxime 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
Streptomycin 5(3.8) 0(0) 0(0) 4(7.6) 0(0) 0(0) 0(0) 9(2.7)
Imipenem 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
Cefixime 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
Trimethoprim 2(1:5) 3(3.0) 1(6.2) 5(9.6) 0(0) 2(13.3) 0(0) 13(3.9)
Nalidixic acid 12 (9.3) 5(5.0) 3(18.7) 12 (23.0) 0(0) 3 (20.0) 1(16.6) 36(10.9)
Ampicillin 41 (31.7) 21 (21.2) 3(18.7) 15 (28.8) 2(33.0) 4(26.6) 2(33.3) 88 (26.7)
Ceftazidime 0(0) 0(0) 0(0) 0(0) 01(0) 1(6.6) 0(0) 1(0.3)
Tetracycline 87 (67.4) 30 (30.0) 6 (37.5) 21 (40.3) 1(16.6) 3(20.0) 3 (50%) 151 (45.8)
Gentamicine 5(3.8) 0(0) 1(6.2) 0(0) 0(0) 3(20.0) 0(0) 9(2.7)
Ciprofloxacin 13 (10.07) 10 (10.0) 2(12:5) 3(5.7) 0(0) 0(0) 0(0) 28 (8.5)
Kanamycin 2(1.5) 01(0) 1(6.2) 0(0) 0(0) 0(0) 0(0) 3(0.9)
Susceptible to all | 178 71 18 78 3 20 9 377
antibiotics

Table Ill. Antibiotic resistance in Enterobacteriaceae strains isolated from wild birds from northeast of Iran.
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Antibiotic Phenotype of resistance Number of isolates (%) | Resistance genes Number of isolates (%)
E. coli Tetracycline 87 (67.4) tet(A) 20(22.9)
tef(B) 38 (43.6)
tef(A) + tet(B) 8(9.1)
tet(M) 10(11.4)
tet(L) 2(2.2)
tet(M) + tet(L) 7(8)
Ampicillin 41 (31.7) blargy 30(73.1)
bla gy 5(12.1)
Enterobacter Tetracycline 30 (30.3) tef(A) 9(30)
tet(B) 14 (46.6)
tef(M) 3(10)
tet(M) + tet(L) 2(6.6)
Ampicillin 21 (21.2) bla gy 4(13.3)
Bla 1(3.3)
Hafnia Tetracycline 6(37.5) tet(B) 3(50)
Ampicillin 3(18.7) bla ey 1(33.3)
Serratia Tetracyeline 21 (40.3) ter(A) 6(28.5)
Ampicillin 15 (28.8) tet(A) + tet(B) 3 (100)
tet(M) 1(6.6)
Salmonella Tetracycline 1(16.6) tet(A) 1(100)
Ampicillin 2(33.3) bla ey 1(50)
Klestella Tetracycline 3(20) Tet(B) 1(33.3)
Ampicillin 4(26.6) bla gy 1(25)
Proteus Tetracycline 3 (50) tef(A) 1(33.3)
Ampicillin 2(13.3)

Table IV. Resistance genes detected in antibiotic resistant isolates obtained from wild birds in Iran.

The percentage of beta-lactamase genes of 88 ampicillin-resistance strains isolated in the present study were as
follows: blarg(18.23 %) was observed in 33 isolates, blagyy (5.52%) gene was detected in 10 isolates, and the blagTy
(0%) gene was not detected in any of the ampicillin-resistant isolates (Table IV).

Virulence factors, phylogenetic groups and integrons genes among E. coli
iIsolates

Among the 129 isolated E. coli isolates, 11 different virulence factor profiles were observed, in which, 65.1% carried at
least one virulence gene, two isolates carried three different virulence genes, and none of them carried the aer gene
(Table V).

The virulence factor, fimH showed the highest frequency with 22.4% (n=29) among E. coli isolates followed by hy/A
gene (6.9%), afa (5.4%), pap C (6.2%), and cnf-1 (2.3%). The aer virulence factor was not detected in any of 129 the
isolates (Table V). Our results showed an association between the presence of the fimH gene and strains' resistance
to ampicillin and tetracycline. Furthermore, all isolates with combinations of hylA/fimH and of hylA/fimH/afa genes
were resistant to ciprofloxacin and ampicillin, respectively (Table V).
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Pattern | Virulence Antibiotic resistance Number of

codes Patterns Isolates (%)
C AMX S SXT NA AMP TE GM CP K

El fimH 1 s 1 1 5 21 20 5 2 0 29 (22.4)

E2 Aer/papeC 0 1 0 1 0 2 1 0 1 1 2}{(1.5)

E3 HvlA/fimH 0 2 0 2 0 2 3 0 - 0 4(3.D

E4 HviA /fimH /afa | 0 0 0 0 0 2 0 0 0 0 2.(1:5)

E5 Cnf-1 0 0 0 0 0 3 1 0 0 1 32:3)

E6 papC 0 1 0 0 0 3 7 2 1 0 8(6.2)

E7 Cnf-1/ papC 0 2 0 1 0 6 7 2 0 2 13 (10)

E8 hviA 0 0 0 0 2 4 1 3 3 1 9(6.9)

E9 afa 1 0 0 0 0 1 1 2 2 1 7(5.4)

E10 Afa/fimH 0 2 1 0 3 4 1 1 7 (5.4)

Ell Aer/enf-1 0 0 0 0 2 2 1 1 0 4 (3.1)

Table V. Prevalence of virulence patterns among 129 E. coli isolates.

Phylogenetic analysis of the 129 E. coli isolates revealed that group B1 was the most prevalent phylogroup (48.8%)
followed by group B2 (19.3%), group A (10.8%), group D (5.4%), group E (6.2%), group C (5.4%) and clade | (1.5%).
2.3% of the isolates did not belong to any of the studied phylogenetic groups. Moreover, we found phylogenetic groups
in the E. coli strains resistant to most of the studied antibiotics, except for chloramphenicol. Our results showed that
isolates belonging to group B1 were resistant to tetracycline (Table VI). Regarding integron genes, the prevalence in
this study was as follows: class 1, 33% of strains; class 3, 18% of strains; class 2, 7% of strains, and 13% of strains
lacked the integron genes. The resistance profile of integron-positive isolates is shown in Table VII.
The integron genes were absent in gentamicin, kanamycin, imipenem, and cefixime resistance isolates.

Antibiotic Phylogenetic group
A Bl B2 C D E Cladel Unknown
(n=14) (n=63) (n=25) | (n=7) (n=7) (n=8) (n=2) (n=3)

Chloramphenicol 0 0 0 0 0 0 0 2
Amoxicillin 0 3 2 2 0 1 0 1
Streptomycin 0 0 0 0 0 3 0 2
Trimethoprim 0 1 1 0 0 0 0 0
Nalidixic acid 1 5 0 2 0 2 0 2
Ampicillin 8 21 11 2 3 3 2 0
Tetracycline 2 36 19 0 2 0 1 0
Gentamicin 1 2 0 1 0 1 0 0
Ciprofloxacin 2 4 4 1 1 | 0 0
Kanamycin 0 1 0 0 1 0 0 0

Table VI. Distribution of antibiotic resistance among phylogenetic groups
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Antibiotic Integron genes
IN | INT2 | INT
T1
Streptomycin 2 1 2
Chloramphenicol 0 0 1
Nalidixicacid 4 0 5
Ciprofloxam(CP) 3 1 3
Amoxicillin 5 1 2
Gentamicine 0 0 0
Kanamycin 0 0 0
Ampicillin 16 |7 8
Imepenem(IPM) 0 0 0
Cefixime(CFM) 0 0 0
Tetracycline 23 |6 11
Trimethoprim 0 1 0
Total 52 16 32

Table VII. Integron genes detected in antibiotic resistant isolates obtained from wild birds in Iran.

Discussion

In the present study, we isolated putative zoonotic bacteria such as E. coli, Yersinia spp., Klebsiella spp., and
Salmonella spp., from apparently healthy wild passerine birds. It indicates that wild passerine bird species may act as
serious environmental reservoirs or bridge hosts of potentially pathogenic microorganisms subclinical (Di Francesco et
al. 2014, Stenkat et al. 2014).

We also detected a dominance of E. coli isolates (71.0%) among the cloacal samples of wild birds. Our results on the
high prevalence of E. coli isolates align with performed studies in Brazil (63.3%) and Germany (88.5%) (Guenther et
al. 2010b, Matias et al. 2016), however, our findings are inconsistent with studies conducted in Italy, which reported
lower prevalence rates (0% and 33.9%) (Dotto et al. 2016). These discrepancies in prevalence rates may be due to
variations in sampling methods, seasonal distribution, and geographical conditions.

In our study, the low prevalence of Salmonella spp., as one of the main causes of gastrointestinal disease is in
agreement with an earlier study on wild passerine birds (Botti et al. 2013, Matias et al. 2016). This result may be
related to the collection of samples from apparently healthy birds. Nevertheless, some studies have reported high
rates of Salmonella (20.8%-27.5%) in gulls, which could be linked to feeding habits, such as foraging at dumps and
sewage treatment plants (Moré et al. 2017).

Several studies have shown that antibiotic resistance rates in wild birds may affect the antibiotic resistance profile in
wild animals (Bonnedahl & Jarhult 2014, Dolejska 2020, Gargiulo et al. 2018). Moreover, a correlation has been
observed between the level of antimicrobial resistance in wild birds, farm animals, and humans (Skurnik et al. 2006).
However, data on the susceptibility of pathogenic bacteria to antimicrobial agents in healthy wild animals is still rather
limited (Guenther et al. 2010a, Silva et al. 2010).

In the present study, we detected several antimicrobial resistances in wild birds for the first time in Iran. Our results
showed the highest antibiotic resistance rate for tetracycline with 45.8% in E.coli isolates, which is in agreement with
other studies reporting a high presence of tetracycline resistance in 50.0% - 70.0% of E. coli isolates (Nowaczek et al.
2021, Radhouani et al. 2012), however, our results are inconsistent with other similar studies that reported a lower rate
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of antibiotic resistance for tetracycline (Guenther et al. 2010b, Santos et al. 2013, Sigirci et al. 2019). These
discrepancies may be due to differences in bird types or geographical distribution.

In the present study, out of 329 isolates, 151 isolates were identified as tetracycline resistant, and 109 isolates carried
the studied tetracycline resistance genes. Among the tetracycline resistance genes, tef(A) and tet(B) are the most
commonly reported genes in E. coli isolates obtained from birds (Santos et al. 2013, Sigirci et al. 2019, Srinivasan et
al. 2008, Vuthy et al. 2017) in addition, the tet(B) gene is frequently reported in Enterobactericeae isolates (Sigirci et
al. 2019, Srinivasan et al. 2008) that is in line with our findings.

TEM b-lactamase production has been frequently known as the mechanism of ampicillin resistance (Machado et al.
2007, Mendonca et al. 2016, Ngaiganam et al. 2019, Silva et al. 2010, Yassin et al. 2017). In our study, we found that
blargy at the predominant rate (73.1%) followed by blagyy (11%) in E. coli strains is in agreement with previous
studies (Islam et al. 2022, Ngaiganam et al. 2019).

Our data on the phylogenetic analysis showed the dominance of group B1 among E. coli isolates which is in
agreement with previous studies analyzing E. coli isolates from wild birds (Escobar-Paramo et al. 2006, Kuczkowski et
al. 2016, Nowaczek et al. 2021, Staji et al. 2017). Fifteen percent of isolates were assigned to groups C, E, clade 1
and group f was not observed among our isolates that low percentage of these groups were reported previously
(Abbasi et al. 2022, Gioia-Di Chiacchio et al. 2016, Staji et al. 2017). Also, other studies have reported that
extraintestinal or enteropathogenic E. coli isolates belong to groups B2 and D while commensal E. coli isolates without
any pathogenic features most often belong to other groups (Kéhler&Dobrindt 2011, Tivendale et al. 2010).

Virulence genes are essential for the identification of pathogenic microorganisms (Chui et al. 2010). In this study,
68.2% of all E. coli isolates were positive for at least one virulence gene. However, the combination of hylA /fimH /afa
virulence genes was only found in two isolates. Previous studies conducted in Italy and Slovakia have indicated the
presence of virulence genes in migratory birds (Bertelloni et al. 2019, Kmet et al. 2013). Considerably, the presence of
virulence genes in wild birds in our study has also been reported in wild mammals and humans (Frommel et al. 2013).

All of the E. coli strains resistant to the studied antibiotic were screened for the presence of integrons. Fifty-eight
percent of the isolates were positive for integrons, and among them, integrons class 1 was more prevalent, which is in
agreement with previous studies (Nebbia et al. 2008, Sacristan et al. 2014) considering that wild passerine birds do
not naturally in contact with antibiotics, 58% rate of occurrence integrons among resistant strains is a very high
number. Research emphasizing the occurrence of integrons, which have a role in the transfer of resistance genes,
potentially provide beneficial data for a deeper understanding of the resistance mechanisms and also for the
development of strategies related to antimicrobials.

Although wild birds are not normally exposed to antibiotic drugs, our results showed the presence of antibiotic
resistance in wild birds. This can be due to their interaction with farm and urban areas and close contact with domestic
animals and humans, so birds may acquire antibiotic resistance from a variety of sources and potentially disseminate
them to domestic animals and human, and vice versa (Atterby et al. 2016). This poses a significance problem in
countries such as Iran, which is biogeographically located among four avifauna regions, the western-eastern
Palearctic, Oriental, and Afrotropical regions, making it an important area for avifauna exchange and hosting a rich
breeding bird fauna.

Given the globally increase in antibiotic resistance, especially in underdeveloped countries, the presence of antibiotic
resistance in the environment can affect human health. Therefore, accurately predicting the source of emerging
resistant bacteria is of utmost important.
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