Effect of changes of vaccination strategies on IBV epidemiology, diagnosis and control: an Italian retrospective study
DOI:
https://doi.org/10.12834/VetIt.2084.11082.2Keywords:
IBV, infectious bronchitis virus, molecular epidemiology, poultry, QX, vaccinationAbstract
Infectious bronchitis virus (IBV) is among the most impactful poultry pathogens, whose control, based on biosecurity and routine vaccination, is hampered by the existence of countless genetic variants sharing poor cross‑protection. A retrospective study was conducted on IBV positive samples collected in Italian broiler farms from 2012 to 2019. In 2015, the adopted vaccination protocol shifted from a Mass and 793B‑based vaccines to the administration of Mass and QX vaccines, allowing to study how changes in vaccination strategies may affect IBV epidemiology, control and diagnosis in the field. The most frequently detected lineages were QX (70.3%), 793B (15.8%) and Mass (11.9%). The relative frequencies of QX and 793B detections remained stable throughout the study, while Mass detections significantly increased after the vaccination change. Rather than to an actual growth of Mass population size, this finding may be attributable to different vaccine interactions, with Mass strains being more frequently concealed by 793B vaccines than by QX ones. Based on the obtained results, the two vaccination protocols appear to be similarly effective in fighting IB outbreaks, which in the last decade have been caused primarily by QX field strains in Italy. These results indicate that vaccination strategies may significantly affect IBV epidemiology and diagnosis, and should therefore be considered when choosing and interpreting diagnostic assays and planning control measures.
References
Bande F., Arshad S.S., Rahman Omar A., Hair-Bejo M., Mahmuda A. & Nair V. 2017. Global distributions and strain diversity of avian infectious bronchitis virus: a review. Anim Health Res Rev, 18, 70-83. doi:10.1017/S1466252317000044
Cavanagh D., Mawditt K., Britton P. & Naylor C.J. 1999. Longitudinal field studies of infectious bronchitis virus and avian pneumovirus in broilers using type-specific polymerase chain reactions. Avian Pathol, 28, 593–605. doi:10.1080/03079459994399
de Wit J.J., Cook J.K.A. & van der Heijden H.M.J.F. 2011. Infectious bronchitis virus variants: a review of the history, current situation and control measures. Avian Pathol, 40, 223–235. doi:10.1080/03079457.2011.566260
Franzo G., Legnardi M., Tucciarone C.M., Drigo M., Martini M. & Cecchinato M. 2019. Evolution of infectious bronchitis virus in the field after homologous vaccination introduction. Vet Res, 50, 92. doi:10.1186/s13567-019-0713-4
Franzo G., Tucciarone C.M., Blanco A., Nofrarías M., Biarnés M., Cortey M., Majó N., Catelli E. & Cecchinato M. 2016. Effect of different vaccination strategies on IBV QX population dynamics and clinical outbreaks. Vaccine, 34, 5670–5676. doi:10.1016/j.vaccine.2016.09.014
Jackwood M.W. 2012. Review of Infectious Bronchitis Virus Around the World. Avian Dis, 56(4), 634–641.
Jackwood M.W., Hall D. & Handel A. 2012. Molecular evolution and emergence of avian gammacoronaviruses. Infect Genet Evol, 12, 1305–1311. doi:10.1016/J.MEEGID.2012.05.003
Jackwood M.W. & Lee D.H. 2017. Different evolutionary trajectories of vaccine-controlled and non-controlled avian infectious bronchitis viruses in commercial poultry. PLoS One, 12, e0176709. doi:10.1371/journal.pone.0176709
Jordan B. 2017. Vaccination against infectious bronchitis virus: A continuous challenge. Vet Microbiol, 206, 137–143. https://doi.org/10.1016/J.VETMIC.2017.01.002
Kumar S., Stecher G. & Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol, 33, 1870–1874. doi:10.1093/molbev/msw054
Legnardi M., Franzo G., Koutoulis K. C., Wiśniewski M., Catelli E., Tucciarone C.M. & Cecchinato M. 2019. Vaccine or field strains: the jigsaw pattern of infectious bronchitis virus molecular epidemiology in Poland. Poultry Sci, 98, 6388–6392. https://doi.org/10.3382/ps/pez473
Manswr B., Ball C., Forrester A., Chantrey J. & Ganapathy K. 2018. Evaluation of full S1 gene sequencing of classical and variant infectious bronchitis viruses extracted from allantoic fluid and FTA cards. Avian Pathol, 47, 418-426. doi: 10.1080/03079457.2018.1471196.
Martin D.P., Murrell B., Golden M., Khoosal A. & Muhire B. 2015. RDP4: Detection and analysis of recombination patterns in virus genomes, Virus Evol, 1, vev003. https://doi.org/10.1093/ve/vev003
Monne I. 2016. Stability and diversity: the Yin and Yang of gammacoronaviruses genome. Proc. 9th Internation Symposium on Avian Corona and Pneumoviruses and Complicating Pathogens, Leusden, The Netherlands, 21-24 June 2016.
Moreno A., Franzo G., Massi P., Tosi G., Blanco A., Antilles N., Biarnes M., Majó N., Nofrarías M., Dolz R., Lelli D., Sozzi E., Lavazza A. & Cecchinato M. 2017. A novel variant of the infectious bronchitis virus resulting from recombination events in Italy and Spain. Avian Pathol, 46, 28–35. doi:10.1080/03079457.2016.1200011
Russo E., Franzo G., Tucciarone C.M., Longoni C. & Cecchinato M. 2016. Evidenze di campo dell’efficacia della vaccinazione per Bronchite infettiva con ceppi Mass e QX nei confronti dell’infezione da ceppi di campo di genotipo Q1. In Atti della Società Italiana di Patologia Aviare. I Simposio Scientifico SIPA, Parma, Italy, 227-232.
Tucciarone C.M., Franzo G., Berto G., Drigo M., Ramon G., Koutoulis K.C., Catelli E. & Cecchinato M. 2018. Evaluation of 793/B-like and Mass-like vaccine strain kinetics in experimental and field conditions by real-Time RT-PCR quantification. Poult Sci, 97, 303–312. doi:10.3382/ps/pex292
Valastro V., Holmes E. C., Britton P., Fusaro A., Jackwood M. W., Cattoli G. & Monne I. 2016. S1 gene-based phylogeny of infectious bronchitis virus: an attempt to harmonize virus classification. Infect Genet Evol, 39, 349–364.
Worthington K.J., Currie R.J.W. & Jones R.C. 2008. A reverse transcriptase-polymerase chain reaction survey of infectious bronchitis virus genotypes in Western Europe from 2002 to 2006. Avian Pathol, 37,247–257.