1
Effects of different phylotypes of avian pathogenic Escherichia coli isolated from broiler chickens with colibacillosis on heterophils functional activities: an in vitro study
VetIt.2111.12262.1

Keywords

Avian
Colibacillosis
Escherichia coli
Heterophil
PCR
Phylogenetic groups
Immunological activities
Iran

How to Cite

Ahmadi, S., Dastmalchi Saei, H., Abtahi Froush, S. M., & Zavarshani, M. (2021). Effects of different phylotypes of avian pathogenic Escherichia coli isolated from broiler chickens with colibacillosis on heterophils functional activities: an in vitro study. Veterinaria Italiana, 57(4), 305–310. https://doi.org/10.12834/VetIt.2111.12262.1

Abstract

Avian pathogenic Escherichia coli (APEC) is a major cause of colibacillosis and is associated with economic losses to the poultry production worldwide. Heterophils are the first line of immune defense of the avian host against invasive pathogens. In this study, APEC isolates from chickens with colibacillosis were assigned to phylogenetic groups and immunological activities of heterophils against these groups were examined. A total of 92 APEC isolates was obtained from 106 samples of diverse organs collected from chickens with colibacillosis from different farms in West Azerbaijan province, Iran. Isolates were assigned to phylogenetic groups based on the Clermont triplex PCR method, and immunological activities (including phagocytosis, respiratory burst and bacterial killing) of heterophils against these groups were examined. As results, the frequency of A, B1, B2 and D groups were 35.87, 44.57, 5.43 and 14.13%, respectively. In addition, opsonized Escherichia coli isolates belonging to B1 group significantly enhanced the level of respiratory burst (0.52 ± 0.02%) while the killing level of them was significantly lower than the other groups (29.40 ± 5.09%). There was no significant difference in phagocytic activity of heterophils against the phylogenetic groups. In conclusion, incomplete immune responses to B1 phylogenetic group maybe a principal cause of mortality by colibacillosis caused by this group. It is suggested to study heterophilic immune reaction against E. coli phylogenetic group for development of effective prevention strategy.
https://doi.org/10.12834/VetIt.2111.12262.1
VetIt.2111.12262.1

References

References

Alizade H., Ghanbarpour R., Jajarami M. & Askari A. 2017. Phylogenetic typing and molecular detection of virulence factors of avian pathogenic Escherichia coli isolated from colibacillosis cases in Japanese quail. Vet Res Forum, 8, 55-58.

Andreasen C.B. & Latimer K.S. 1989. Separation of avian heterophils from blood using Ficoll-Hypaque discontinuous gradients. Avian Dis, 33, 163-167.

Ariaans M.P., Matthijs M.G., van Haarlem D., van de Haar P., van Eck J.H., Hensen E.J. & Vervelde L. 2008. The role of phagocytic cells in enhanced susceptibility of broilers to colibacillosis after Infectious Bronchitis Virus infection. Vet Immunol Immunopathol, 123, 240-250.

Blattes G.B., Mestieri L.B., Bottcher D.E., Fossati A.C., Montagner F. & Grecca F.S. 2017. Cell migration, viability and tissue reaction of calcium hypochlorite based-solutions irrigants: An in vitro and in vivo study. Arch Oral Biol, 73, 34-39.

Bonacorsi S.P.P., Clermont O., Tinsley C., Le Gall I., Beaudoin J.C., Elion J., Nassif X. & Bingen E. 2000. Identification of Regions of the Escherichia coli Chromosome Specific for Neonatal Meningitis-Associated Strains. Infect Immun, 68, 2096-2101.

Chen, Y. & Junger W.G. 2012. Measurement of oxidative burst in neutrophils. Methods Mol Biol, 844, 115-124.

Clermont O., Bonacorsi S. & Bingen E. 2000. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol, 66, 4555-4558.

Duriez P., Clermont O., Bonacorsi S., Bingen E., Chaventre A., Elion J., Picard B. & Denamur E. 2001. Commensal Escherichia coli isolates are phylogenetically distributed among geographically distinct human populations. Microbiology, 147, 1671-1676.

Fijalkowski K., Czernomysy-Furowicz D., Irwin J.A., Nawrotek P. & Pobucewicz A. 2012. Secretory virulence factors produced by Staphylococcus aureus isolates obtained from mastitic bovine milk effect on bovine polymorphonuclear neutrophils. Res Vet Sci, 93, 82-87.

Gargan R.A., Hamilton-Miller J.M. & Brumfitt W. 1993. Effect of pH and osmolality on in vitro phagocytosis and killing by neutrophils in urine. Infect Immun, 61, 8-12.

Genovese K.J., He H., Swaggerty C.L. & Kogut M.H. 2013. The avian heterophil. Dev Comp Immunol, 41, 334-340.

Ghanbarpour R. & Oswald E. 2010. Phylogenetic distribution of virulence genes in Escherichia coli isolated from bovine mastitis in Iran. Res Vet Sci, 88, 6-10.

Ghanbarpour R., Sami M., Salehi M. & Ouromiei M. 2011. Phylogenetic background and virulence genes of Escherichia coli isolates from colisepticemic and healthy broiler chickens in Iran. Trop Anim Health Prod, 43, 153-157.

Gomis S., Babiuk L., Godson D. L., Allan B., Thrush T., Townsend H., Willson P., Waters E., Hecker R. & Potter A. 2003. Protection of chickens against Escherichia coli infections by DNA containing CpG motifs. Infec immun, 71, 857-863.

Guabiraba R. & Schouler C. 2015. Avian colibacillosis: still many black holes. FEMS Microbiol Lett, 362, 118.

Hussain A., Shaik S., Ranjan A., Nandanwar N., Tiwari S.K., Majid M., Baddam R., Qureshi I.A., Semmler T., Wieler L.H., Islam M.A., Chakravortty D. & Ahmed N. 2017a. Risk of Transmission of Antimicrobial Resistant Escherichia coli from Commercial Broiler and Free-Range Retail Chicken in India. Front Microbiol, 8, 2120.

Hussain H.I., Iqbal Z., Seleem M.N., Huang D., Sattar A., Hao H. & Yuan Z. 2017b. Virulence and transcriptome profile of multidrug-resistant Escherichia coli from chicken. Sci Rep, 7, 8335.

Jaureguy, F., Landraud L., Passet V., Diancourt L., Frapy E., Guigon G., Carbonnelle E., Lortholary O., Clermont O., Denamur E., Picard B., Nassif X. & Brisse S. 2008. Phylogenetic and genomic diversity of human bacteremic Escherichia coli strains. BMC genomics, 9, 560.

Katouli M. 2010. Population structure of gut Escherichia coli and its role in development of extra-intestinal infections. Iran J Microbiol, 2, 59-72.

Kazemnia A., Ahmadi M. & Dilmaghani M. 2014. Antibiotic resistance pattern of different Escherichia coli phylogenetic groups isolated from human urinary tract infection and avian colibacillosis. Iran Biomed J, 18, 219-224.

Kemmett K., Williams N.J., Chaloner G., Humphrey S., Wigley P. & Humphrey T. 2014. The contribution of systemic Escherichia coli infection to the early mortalities of commercial broiler chickens. Avian Pathol, 43, 37-42.

Kogut M.H., Genovese K.J., Nerren J.R. & He H. 2012. Effects of avian triggering receptor expressed on myeloid cells (TREM-A1) activation on heterophil functional activities. Dev Comp Immunol, 36, 157-165.

Li B., Sun J.Y., Han L.Z., Huang X.H., Fu Q. & Ni Y.X. 2010. Phylogenetic groups and pathogenicity island markers in fecal Escherichia coli isolates from asymptomatic humans in China. Appl Environ Microbiol, 76, 6698-66700.

Lutful Kabir S.M. 2010. Avian Colibacillosis and Salmonellosis: A Closer Look at Epidemiology, Pathogenesis, Diagnosis, Control and Public Health Concerns. Int J Environ Res Public Health, 7, 89-114.

Mehrzad J., Duchateau L. & Burvenich C .2009. Phagocytic and bactericidal activity of blood and milk-resident neutrophils against Staphylococcus aureus in primiparous and multiparous cows during early lactation. Vet Microbiol, 134, 106-112.

Mellata M., Dho-Moulin M., Dozois C.M., Curtiss R.3RD., Lehoux B. & Fairbrother J.M. 2003. Role of avian pathogenic Escherichia coli virulence factors in bacterial interaction with chicken heterophils and macrophages. Infect immun, 71, 494-503.

Motlagh B.M., Ahangaran N.A. & Froushani S.M. 2015. Calcitriol modulates the effects of bone marrow-derived mesenchymal stem cells on macrophage functions. Iran J Basic Med Sci, 18, 672-676.

Moulin-Schouleur M., Reperant M., Laurent S., Bree A., Mignon-grasteau S., Germon P., Rasschaert D. & Schouler C. 2007. Extraintestinal pathogenic Escherichia coli strains of avian and human origin: link between phylogenetic relationships and common virulence patterns. J Clin Microbiol, 45, 3366-3376.

Obeng A.S., Rickard H., Ndi O., Sexton M. & Barton M. 2012. Antibiotic resistance, phylogenetic grouping and virulence potential of Escherichia coli isolated from the faeces of intensively farmed and free range poultry. Vet Microbiol, 154, 305-315.

Ondrackova P., Alexa P., Matiasovic J., Volf J. & Faldyna M. 2012. Interaction of porcine neutrophils with different strains of enterotoxigenic Escherichia coli. Vet Microbiol, 160, 108-116.

Qureshi M.A. 2003. Avian macrophage and immune response: an overview. Poult Sci, 82, 691-698.

Ramadan H., Awad A. & Ateya A. 2016. Detection of phenotypes, virulence genes and phylotypes of avian pathogenic and human diarrheagenic Escherichia coli in Egypt. J Infect Dev Ctries, 10, 584-591.

Riffon R., Sayasith K., Khalil H., Dubreuil P., Drolet M. & Lagace J. 2001. Development of a rapid and sensitive test for identification of major pathogens in bovine mastitis by PCR. J Clin Microbiol, 39, 2584-2589.

Saei H.D. & Zavarshani, M. 2018. Phylogenetic Grouping of Verotoxigenic Escherichia coli (VTEC) Obtained from Sheep and Broiler Chicken in Northwestern Iran. Acta Vet Eurasia, 44, 53-58.

Copyright (c) 2022 Veterinaria Italiana