1
Salmonella enterica diversity and antimicrobial resistance profile in broiler slaughterhouse by-products
VetIt.2434.14968.1

Keywords

environmental contamination
poultry by-products
poultry farming
salmonellosis

How to Cite

Alcântara, J. B., Martins, P. C., Nascente, E. de P., Marcos B. Café, Pascoal, L. M., Teles, A. V., Jayme, V. de S., & Andrade, M. A. (2022). Salmonella enterica diversity and antimicrobial resistance profile in broiler slaughterhouse by-products. Veterinaria Italiana, 58(2). https://doi.org/10.12834/VetIt.2434.14968.1

Abstract

The aim of this study was to investigate the presence of Salmonella enterica in by‑products (feathers, spleen, cecum, and crop) from broiler slaughterhouses as well as to determine the antimicrobial resistance profile of the identified serovars. Forty‑four lots of broilers in nine slaughterhouses located in the central‑west region of Brazil were evaluated. Samples of spleen, feathers, cecum, and crop were collected in a pool and a total of 1,232 samples were evalueted. These were processed for conventional bacterial isolation and subjected to biochemical and serological tests to identify serovars. The identified serovars were subjected to the antimicrobial susceptibility test, where nine different antimycotics were investigated. Salmonella enterica was identified in 7.1% (87/1,232) of all evaluated samples, mostly in feathers (12.3%) and spleen (8.1%). The most frequent serovars were Schwarzengrund (29.9%), Agona (25.4%), Mbandaka (12.7%) and Anatum (8.1%). Nine serovars showed resistance to at least one antimicrobial, especially serovars Mbandaka, Infantis and Typhimurium. Amoxicillin and tetracycline were not effective in inhibiting at least five and four serovars, respectively.

https://doi.org/10.12834/VetIt.2434.14968.1
VetIt.2434.14968.1

References

Afshin J., Saeid S. & Reza G. 2014. Study on Salmonella contamination in poultry lean meat and meat with skin in Tabriz slaughterhouses. African J Biotechnol, 13, 181-184.

Alvarez J., Lopez G., Muellner P., Frutos C., Ahlstrom C., Serrano T., Moreno M.A., Duran M., Saez J.L., Dominguez, L., Ugarte‐Ruiz M. 2019. Identifying emerging trends in antimicrobial resistance using Salmonella surveillance data in poultry in Spain. Transbound Emerg Dis, 67,250–262.

Anderson A.D., Nelson J.M., Rossiter S. & Ângulo F.J. 2003. Public Health Consequences of Use of Antimicrobial Agents in Food Animals in the United States. Microb Drug Resistance, 9, 373- 379.

Anderson T.C., Nguyen T.A. & Adams J.K. 2016. Multistate outbreak of human Salmonella Typhimurium infections linked to live poultry from agricultural feed stores and mail-order hatcheries, United States 2013. One Health, 2, 144–149.

Andino A. & Hanning I. 2015. Salmonella enterica: Survival, colonization, and virulence differences among serovars. Scientific World Journal, 520179. https://doi.org/10.1155/2015/520179.

Audia L.P., Webb C.C. & Foster J.W. 2001. Breaking through the acid barrier: an orchestrated response to proton stress by enteric bactéria. Int J Med Microbiol, 291, 97-106.

Basler C., Nguyen T.A., Anderson T.C., Hancock T. & Behravesh C.B. 2016. Outbreaks of Human Salmonella Infections Associated with Live Poultry, United States, 1990-2014. Emerg Infect Dis, 22, 1705–1711.

Baptista D.Q., Santos A.F.M., Aquino M.H.C, Abreu D.L.C., Rodrigues D.P., Nascimento E.R. & Pereira V.L.A. 2018. Prevalence and antimicrobial susceptibility of Salmonella spp. serotypes in broiler chickens and carcasses in the State of Rio de Janeiro, Brazil. Pesquisa Veterinária Brasileira, 38,1278–1285.

Borges KA, Martelo EB, Santos LA, Furian T.Q., Cisco I.C., Manto L. & Santos R.L.2019. Detection and quantification of salmonella spp. in poultry slaughterhouses of southern brazil. J Infect Dev Countries, 13,455–460.

Brasil Ministério da Agricultura Pecuária e Abastecimento (MAPA). 2003. Instrução Normativa n° 62 de 26 de agosto de 2003. Métodos Analíticos Oficiais para Análises Microbiológicas para Controle de Produtos de Origem Animal e Água. Diário Oficial da União, Seção 1, 19/03/2003, 14.

Buhr R.J., Bourassa D.V., Hinton A., Fairchild B.D. & Ritz C.W. 2017. Impact of litter Salmonella status during feed withdrawal on Salmonella recovery from the broiler crop and ceca. Poultry Sci, 96,4361–4369.

Cardoso A.L.S.P. & Tessari E.N.C. 2008. Salmonella na segurança dos alimentos. Biológico, 70, 11-13.

Clinical and Laboratory Standards Institute (CLSI). 2019. Performance Standards for Antimicrobial Susceptibility. Wayne, PA, Clinical and Laboratory Standards Institute, 29, 1-25.

Cunha-Neto A., Carvalho L.A., Carvalho R.C.T., Rodrigues D.P., Mano S.B., Figueiredo E.E.S. & Conte-Júnior C.A. 2018. Salmonella isolated from chicken carcasses from a slaughterhouse in the state of Mato Grosso, Brazil: Antibiotic resistance profile, serotyping, and characterization by repetitive sequence-based PCR system. Poultry Sci, 97,1373–1381.

Dantas S.T.A., Camargo C.H., Tiba-Casas M.R., Vivian R.C., Pinto J.P.A.N., Pantoja J.C.F., Hernandes R.T., Fernandes Júnior A. & Rall V.L.M. 2020. Environmental persistence and virulence of Salmonella spp. Isolated from a poultry slaughterhouse. Food Res Int, 129,1–8.

Djeffal S., Mamache B., Elgroud R., Hireche S. & Bouaziz O. 2018. Prevalence and risk factors for Salmonella spp. contamination in broiler chicken farms and slaughterhouses in the northeast of Algeria. Vet World, 11, 1102–1108.

Elmonir W, Hegazy AM, El-Tras WF, Shohiep A. 2017. Extremely drug-resistant Salmonella in broiler production chain in Egypt. Life Sci J, 14, 81–87.

Georgia Poultry Laboratory. 1997. Monitoring and detection of Salmonella in poultry and poultry environments. Oakwood, Georgia Poultry Laboratory.

Gonçalves G.A.M., Donato T.C., Baptista A.A.S., Corrêa I.M.O., Garcia K.C.O.D. & Andreatti Filho R.L. 2014. Bacteriophage-induced reduction in Salmonella Enteritidis counts in the crop of broiler chickens undergoing preslaughter feed withdrawal. Poultry Sci, 93,216–220.

Hayward M.R., Petrovska L., Jansen V.A.A. & Woodward M.J. 2016. Population structure and associated phenotypes of Salmonella enterica serovars Derby and Mbandaka overlap with host range. BMC Microbiol, 16, 1–9.

Hinton A.J., Buhr R.J. & Ingran K.D. 2000. Physical, chemical, and microbiological changes in the crop of broiler chickens subjected to incremental feed withdrawal. Poultry Sci, 79,212- 218.

Hsieh Y.C., Poole T.L., Runyon M, Hume M. & Herrman T. 2016. Prevalence of nontyphoidal Salmonella and Salmonella strains with conjugative antimicrobial-resistant serovars contaminating animal feed in Texas. J Food Protect, 79, 194-204.

Kirk M.D., Pires S.M., Black R.E., Caipo M. & Crump J.A. 2015. World Health Organization Estimates of the Global and Regional Disease Burden of 22 Foodborne Bacterial, Protozoal, and Viral Diseases, 2010: A Data Synthesis. PLoS Med, 12, e1001921.

Lee HJ, Youn SY, Jeong OM, Kim J.H., Kim D.W., Jeong J.W., Kwon Y.K. & Kang M.S. 2019. Sequential Transmission of Salmonella in the Slaughtering Process of Chicken in Korea. J Food Sci, 84, 871–876.

Lee N.Y., Park S.Y., Kang I.S. & Ha S.D. 2014. The evaluation of combined chemical and physical treatments on the reduction of resident microorganisms and Salmonella typhimurium attached to chicken skin. Poultry Sci, 93, 208–215.

Lindsay C., Flint J., Lilly K., Hope K., Wang Q., Howard P., Sintchenko V. & Durrheim D.V. 2018. Retrospective use of whole genome sequencing to better understand an outbreak of Salmonella enterica serovar Mbandaka in New South Wales, Australia. Western Pac Surveill Response J, 9, 20–25.

Mendonça EP, Melo RT, Nalevaiko PC, Monteiro G.P., Fonseca B.B., Galvão N.N., Giombelli A. & Rossi D.A. 2019. Spread of the serotypes and antimicrobial resistance in strains of Salmonella spp. isolated from broiler. Brazilian J Microbiol, 50, 515–522.

Mittrucker H.W., Kohler A. & Kaufmann S.H. 2002. Characterization of the murine Tlymphocyte response to Salmonella enterica serovar Typhimurium infection. Infect Immun, 70,199–203.

Miskiewicz A., Kowalczyk P., Oraibi S.M., Cybulska K. & Misiewicz A. 2018. Bird feathers as potential sources of pathogenic microorganisms: a new look at old diseases. Antonie van Leeuwenhoek, 111, 1493–1507.

Monte D.F., Lincopan N., Berman H., Cerdeira L., Keelara S., Thakur S., Fedorka-Cray P.J. & Landgraf M. 2019. Genomic Features of High-Priority Salmonella enterica Serovars Circulating in the Food Production Chain, Brazil, 2000–2016. Scientific Rep, 9, 11058.

Moraes D.M.C., Andrade M.A., Minafra-Rezende C.S., Barnabé A.C.S., Sá Jayme V., Nunes I.A. & Batista D.A. 2014. Fontes de infecção e perfil de suscetibilidade aos antimicrobianos de Salmonella sp. isoladas no fluxo de produção de frangos de corte. Arquivos do Instituto Biolológico, 81, 195–201.

Rimet CS, Maurer JJ, Pickler L, Stabler L., Johnson K.K., Berghaus R.D., Villegas A.M., Lee M. & França M. 2019. Salmonella Harborage Sites in Infected Poultry That May Contribute to Contamination of Ground Meat. Front Sustainable Food Systems, 3, 1–11.

Tegegne F.M. 2019. Epidemiology of Salmonella and its serotypes in human, food animals, foods of animal origin, animal feed and environment. J Food Nutrition Health, 2, 7–14.

Ullah S., Bashir S. & Qasim A. 2017. Salmonella infection amongst food workers in Lahore. Journal Ayub Medical College Abbottabad, 29, 366.

Waghamare R., Animal M. & Vaidya V. 2019. Quantifying the Salmonella spp . at critical stages of poultry processing by miniature MPN techniques (mMPN). J Entomol Zool Studies, 7, 1089–1093.

Zeng J, Lei C, Wang Y, Chen Y., Zhang X., Kang Z., Zhai X., Ye X. & Wang H. 2018. Distribution of Salmonella Enteritidis in internal organs and variation of cecum microbiota in chicken after oral challenge. Microbial Pathog, 122, 174–179.

Copyright (c) 2022 Juliana Bonifácio Alcântara, Poliana Carneiro Martins, Eduardo de Paula Nascente, Marcos B. Café, Lívia Mendonça Pascoal, Amanda Vargas Teles, Valéria de Sá Jayme, Maria Auxiliadora Andrade