Etiological agents and bacterial sensitivity in subclinical mastitis in Brazil: a ten-year systematic review
DOI:
https://doi.org/10.12834/VetIt.2601.17023.2Keywords:
Dairy herd, Cow, Resistance, Antibiotic, PathogenAbstract
Considering the high prevalence of subclinical mastitis and its impacts on milk production, thematic studies are need to provide strategic data for its control. This study aimed at investigating the most frequent microorganisms associated with subclinical mastitis in dairy cows in Brazil through compiling the occurrence of the etiological agents and their sensitivity to antibiotics. The systematic review includes articles published between 2009 and 2019. Fiftyseven articles evaluating 22,287 milk samples were selected. The number of publications and the sample size were not homogeneous among Brazilian regions. Most of the studies and sampling were conducted in Rio Grande do Sul, whereas no studies were found in some states in the north and mid‑west regions. The most frequent pathogen was Staphylococcus spp. It was isolated in all studies and had an average prevalence of 49% in the analyzed samples. Resistance to penicillin was the most frequent microbial resistance found in Brazil, with an average of 66% among the isolates evaluated. Moreover, bacterial resistance to cephalexin, cefoperazone, erythromycin, gentamicin, neomycin, penicillin, tetracycline, and trimethoprim increased over the research period. Given the territorial extension, the etiological diversity, and the lack of studies with a representative sample, the compilation of scientific data must be interpreted with caution. Regions where a greater number of studies were conducted and with numerous samples, such as the South, provided a comprehensive scenario that is closer to reality. Nevertheless, although decision making on the farm cannot be replaced by scientific studies, it can be supported by such efforts.
References
Algharib S.A., Dawood A. & Xie S. 2020. Nanoparticles for treatment of bovine Staphylococcus aureus mastitis. Drug Deliv, 27, 292–308.
Beber C.L., Carpio A.F.R., Almadani M.I. & Theuvsend L. 2019. Dairy supply chain in Southern Brazil: Barriers to competitiveness. Int Food Agribus Manag Rev, 22, 651–673.
Byomi A., Zidan S., Hadad G., Sakr M. & Sakr E. 2020. Epidemiology of Mastitis in Dairy Cattle with Special Reference to Some Associated Risk Factors. J Curr Vet Res, 2, 35–46.
Casanova V.P., Appio J., Kohl E., Michaelsen T.R., Paim D.S., Brunetto T.R., Payão Pellegrini D.C., Bennemann P.E., Giacomini Collet S. & Kolling Girardini L. 2016. Bovine mastitis: Prevalence and antimicrobial susceptibility profile and detection of genes associated with biofilm formation in Staphylococcus aureus. Semin Agrar, 37, 1369–1378.
Cazoto L.L., Martins D., Ribeiro M.G., Durán N. & Nakazato G. 2011. Antibacterial activity of violacein against Staphylococcus aureus isolated from Bovine Mastitis. J Antibiot (Tokyo), 64, 395–397.
Chan K., Ledesma K.R., Wang W. & Tam V.H. 2020. Characterization of amikacin drug exposure and nephrotoxicity in an animal model. Antimicrob Agents Chemother, 64(9), e00859-20
Cheng J., Qu W., Barkema H.W., Nobrega D.B., Gao J. & Liu G. 2019. Antimicrobial resistance profiles of 5 common bovine mastitis pathogens in large Chinese dairy herds. J Dairy Sci, 102, 2416–2426.
da Silva Duarte V., Treu L., Sartori C., Dias R.S., da Silva Paes I. & Vieira M.S. 2020. Milk microbial composition of Brazilian dairy cows entering the dry period and genomic comparison between Staphylococcus aureus strains susceptible to the bacteriophage vB_SauM-UFV_DC4. Sci Rep, 10(1), 5520
Dias J.A., Brito M. A. V. P. & Queiroz R. B. 2015. Antimicrobial resistance in Staphylococcus aureus isolated from mastitis in dairy herds from the state of Rondonia, Brazil. In Congresso Internacional do Leite, 1–4.
Dyar O.J., Huttner B., Schouten J. & Pulcini C. 2017. What is antimicrobial stewardship? Clin Microbiol Infect, 23, 793–798.
Fim Junior G.A., Vaso C.O., Seixas A.B., Lopes N.S.S., Pilon L.E. & Santana R.C.M. 2015. Sensibilidade Antimicrobiana de Staphylococcus Aureus isolados de amostras de leite de vacas com mastite subclínica. Ars Vet, 31, 117.
Freitas C.H., Mendes J.F., Villarreal P. V., Santos P.R., Gonçalves C.L.& Gonzales H.L. 2018. Identification and antimicrobial suceptibility profile of bacteria causing bovine mastitis from dairy farms in pelotas, rio grande do sul. Brazilian J Biol, 78, 661–666.
Gomes F. & Henriques M. 2016. Control of Bovine Mastitis: Old and Recent Therapeutic Approaches. Curr Microbiol, 72, 377–382.
Gonçalves J.L., Kamphuis C., Vernooij H., Araújo J.P., Grenfell R.C. & Juliano L. 2020. Pathogen effects on milk yield and composition in chronic subclinical mastitis in dairy cows. Vet J, 262, 105473
Gonçalves J.L., Tomazi T., Barreiro J.R., Beuron D.C., Arcari M.A. & Lee S.H.I. 2016. Effects of bovine subclinical mastitis caused by Corynebacterium spp. on somatic cell count, milk yield and composition by comparing contralateral quarters. Vet J, 209, 87–92.
Hamali H., Hamidi-Sofiani V. & Nofouzi K. 2017. Comparison of Two Different Protocols for the Treatment of Acute Escherichia coli Mastitis in Dairy Cattle. J Buffalo Sci, 6, 48–53.
Hillerton J.E. 2020. Timing of entry of Streptococcus uberis into the mammary gland of the dairy cow. J Dairy Res, 87, 295–297.
Hogeveen H., Huijps K. & Lam T.J.G.M. 2011. Economic aspects of mastitis: New developments. N Z Vet J, 59, 16–23.
Hutton B., Salanti G., Caldwell D.M., Chaimani A., Schmid C.H. & Cameron C. 2015. The PRISMA Extension Statement for Reporting of Systematic Reviews Incorporating Network Meta-analyses of Health Care Interventions: Checklist and Explanations. Ann Intern Med, 162, 777.
Karach G.M., Ferrari M.V., Longhi E. & Liston M.A. 2015. Perfil bacteriano de culturas de leite na região sudoeste do paraná. Arch Vet Sci, 20, 36–44.
Keefe G. 2012. Update on control of staphylococcus aureus and streptococcus agalactiae for management of mastitis. Vet Clin North Am Food Anim Pract, 28, 203–216.
Motta R.G. 2015. Efficacy of extended ceftiofur intramammary therapy for treatment of staphylococcal subclinical mastitis in lactating primiparous heifers. Universidade Estadual Paulista, 114 pp.
Neethan N., Saravanan S., Suresh P., Ponnuswamy K.K. & Palanivel K.M. 2017. Prevalence of Clinical Mastitis due to E. coli in Bovines. Int J Curr Microbiol Appl Sci, 6, 405–409.
Oliver J.P., Gooch C.A., Lansing S., Schueler J., Hurst J.J. & Sassoubre L. 2020. Invited review: Fate of antibiotic residues, antibiotic-resistant bacteria, and antibiotic resistance genes in US dairy manure management systems. J Dairy Sci, 103, 1051–1071.
Pyörälä S. & Taponen S. 2009. Coagulase-negative staphylococci-Emerging mastitis pathogens. Vet Microbiol, 134, 3–8.
Ruegg P.L. 2017. A 100-Year Review: Mastitis detection, management, and prevention. J Dairy Sci, 100, 10381–10397.
Santos E.M.P. dos, Brito M.A.V.P., Lange C., Brito J.R.F. & Cerqueira M.M.O.P. 2018. Streptococcus e gêneros relacionados como agentes etiológicos de mastite bovina. Acta Sci Vet, 35, 17.
Sharma N., Rho G.J., Hong Y.H., Kang T.Y., Lee H.K. & Hur T.Y. 2012. Bovine mastitis: An Asian perspective. Asian J Anim Vet Adv, 7, 454–476.
Silva J.G., Alcântara A.M. & Mota R.A. 2018. Mastite bovina causada por Staphylococcus spp. resistentes à meticilina: revisão de literatura. Pesqui Veterinária Bras, 38, 223–228.
Soares L.C., Pereira I.A., Pribul B.R., Oliva M.S., Coelho S.M.O. & Souza M.M.S. 2012. Antimicrobial resistance and detection of mecA and blaZ genes in coagulase-negative Staphylococcus isolated from bovine mastitis. Pesqui Vet Bras, 32, 692–696.
Souza K.S.S., Oliveira Y.C.M., Duarte A.F.V., Oliveira T.C., Veloso Á.L.C. & Oliveira P.M.C. 2016. Avaliação da sensibilidade dos agentes etiológicos causadores da mastite subclínica a antimicrobianos em vacas leiteiras. Cad Ciências Agrárias, 8, 83–89.
Tomazi T. & dos Santos M.V. 2020. Antimicrobial use for treatment of clinical mastitis in dairy herds from Brazil and its association with herd-level descriptors. Prev Vet Med, 176, 104937
Viçosa G.N., Moraes P.M., Yamazi A.K. & Nero L.A. 2010. Enumeration of coagulase and thermonuclease-positive Staphylococcus spp. in raw milk and fresh soft cheese: An evaluation of Baird-Parker agar, Rabbit Plasma Fibrinogen agar and the PetrifilmTM Staph Express count system. Food Microbiol, 27, 447–452.