Antibiotic Resistance Profile of Rarely Isolated Salmonella Serotypes from Poultry in Turkey
DOI:
https://doi.org/10.12834/VetIt.3004.20698.2Keywords:
Salmonella, antibiotic resistance, PoultryAbstract
This study investigated five strains of each serotype of Salmonella Agona, Salmonella Heidelberg, Salmonella Hindmarsh, Salmonella Kouka, Salmonella Muenchen, Salmonella Ottmarchen, Salmonella Saintpaul and Salmonella II, isolated during the 2014-2017 period. Disc diffusion was used to identify the phenotypic profiles of antibiotic resistance to 12 antimicrobials while the presence of antibiotic resistance genes (ARGs) was detected by PCR. The most sensitive serotype was S. Kouka while the most resistant serotypes were S. Agona and S. Heidelberg. MDR was detected most frequently in S. Agona strains, followed by S. Saintpaul, S. Hindmarsch, and S. Ottmarchen. The samples were most susceptible to chloramphenicol and ceftazidime and most resistant to sulfonamide. The resistance genes were detected in phenotypically resistant strains. Among the tetracycline-resistant strains, tet (A) was the most prevalent gene. The results of this study highlight the importance of monitoring antibiotic resistance profiles and related genes, which can spread to form MDR bacteria. Salmonella spp., which significantly contribute to ARG dissemination, should be monitored constantly to protect the closely related health of humans, animals, and the environment. The level of antibiotic resistance observed in this study, even in rarely isolated Salmonella serotypes, also indicates the need for careful and selective use of antibiotics.
References
Aldema M.L., McMurry L.M., Walmsley A.R. & Levy S.B.1996. Purification of the Tn10-specified tetracycline efflux antiporter teta in a native state as a polyhistidine fusion protein. Mol Microbiol, 19, 187-95.
Asai T., Ishihara K., Harada K., Kojima A., Tamura Y., Sato S. & Takahashi T. 2007. Long-Term Prevalence of Antimicrobial-Resistant Salmonella enterica Subspecies enterica Serovar Infantis in the Broiler Chicken Industry in Japan. Microbiol Immunol, 51, 111-115.
Bakkeren E., Huisman J.S., Fattinger S.A., Hausmann A., Furter M., Egli A., Slack E., Sellin M.E., Bonhoeffer S., Regoes R.R., Diard M. & Hardt W.D. 2019. Salmonella persisters promote the spread of antibiotic resistance plasmids in the gut. Nature, 573, 276-280.
Brunelle B.W., Bearson S.M. & Bearson B.L. 2013. Tetracycline accelerates the temporally-regulated invasion response in specific isolates of multidrug-resistant Salmonella enterica serovar Typhimurium. BMC Microbiol, 13, 202.
Castro-Vargas R.E., Herrera-Sanchez M.P., Rodriguez-Hernandez R. & Rondon-Barragan I.S. 2020. Antibiotic resistance in Salmonella spp. isolated from poultry: A global overview. Vet World, 13, 2070-2084.
Castro-Vargas R.E., Fandiño de Rubio L.C., Vega A. & Rondón-Barragán I. 2019. Phenotypic and genotypic resistance of Salmonella Heidelberg isolated from one of the largest poultry production region from Colombia. Int J Poult Sci, 18, 610-617.
Chang Y.J., Chen M.C., Feng Y., Su L.H., Li H.C., Yang H.P., Yu M.J., Chen C.L. & Chiu C.H. 2020. Highly antimicrobial-resistant nontyphoidal Salmonella from retail meats and clinical impact in children, Taiwan. Pediatr Neonatol, 61, 432-438.
Chen T.T., Jiang J.L., Ye C., Xie J.H., Chen X., Xu D.Y. & Fang R. 2019. Genotypic characterization and antimicrobial resistance profile of Salmonella isolated from chicken, pork and the environment at abattoirs and supermarkets in Chongqing, China. BMC Vet Res, 15.
Chopra I. & Roberts M. 2001. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev, 65, 232-60.
CLSI. 2021. Performance standards for antimicrobial susceptibility testing. 31st ed. CLSI supplement M100. Clinical and Laboratory Standards Institute.
European Food Safety Autorithy (EFSA), European Centre for Disease Prevention, and Control. 2017. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016. EFSA J, 15.
European Food Safety Autorithy (EFSA), European Centre for Disease Prevention, and Control (ECDC). 2018. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. EFSA J, 16, e05500.
European Food Safety Autorithy (EFSA), European Centre for Disease Prevention, and Control (ECDC) 2020. The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2017/2018. EFSA J, 18, e06007.
Gargano V., Sciortino S., Gambino D., Costa A., Agozzino V., Reale S., Alduina R. & Vicari D. 2021. Antibiotic susceptibility profile and tetracycline resistance genes detection in Salmonella spp. strains isolated from animals and food. Antibiotics (Basel), 10.
Guerra B., Junker E., Miko A., Helmuth R. & Mendoza M.C. 2004. Characterization and localization of drug resistance determinants in multidrug-resistant, integron-carrying Salmonella enterica serotype Typhimurium strains. Microb Drug Res, 10, 83-91.
Hall R.M. 2010. Salmonella genomic islands and antibiotic resistance in Salmonella enterica. Future Microbiol, 5, 1525-38.
Hashempour-Baltork F., Hosseini H., Shojaee-Aliabadi S., Torbati M., Alizadeh A.M. & Alizadeh M. 2019. Drug resistance and the prevention strategies in food borne bacteria: an update review. Adv Pharm Bull, 9, 335-347.
Kaya I.B., Sahan Ö., Akan M. & Diker K.S. 2017. Class 1 Integrons and the antibiotic resistance profile of Salmonella Infantis strains from broiler chickens. Kafkas Univ Vet Fak Derg, 23, 803-807.
Khoshbakht R., Derakhshandeh A., Jelviz L. & Azhdari F. 2018. Tetracycline resistance genes in Salmonella enterica serovars with animal and human origin. Int J Enteric Pathog, 6, 60-64.
Kızıl S. 2020. Extended spectrum beta-lactamase (ESβL), AmpC and carbapenemase activities and colistin resistance of Salmonella spp. isolated from food poisoning cases in Turkey. Turk J Vet Anim Sci, 44, 821-829.
Majowicz S.E., Musto J., Scallan E., Angulo F.J., Kirk M., O'Brien S.J., Jones T.F., Fazil A., Hoekstra R.M. & International Collaboration on Enteric Disease Burden of Illness S. 2010. The global burden of nontyphoidal Salmonella gastroenteritis. Clin Infect Dis, 50, 882-9.
McDermott P.F., Zhao S. & Tate H. 2018. Antimicrobial resistance in nontyphoidal Salmonella. Microbiol Spect, 6.
Millemann Y., Gaubert S., Remy D. & Colmin C. 2000. Evaluation of IS200-PCR and comparison with other molecular markers to trace Salmonella enterica subsp. enterica serotype typhimurium bovine isolates from farm to meat. J Clin Microbiol, 38, 2204-9.
Polianciuc S.I., Gurzau A.E., Kiss B., Stefan M.G. & Loghin F. 2020. Antibiotics in the environment: causes and consequences. Med Pharm Rep, 93, 231-240.
Sahan O., Aral E.M., Aden M.M.A., Aksoy A., Yilmaz O., Jahed R. & Akan M. 2016. Distribution and antibiotic resistance of Salmonella isolates from broiler enterprices in Turkey. Ankara Univ Vet Fak Derg, 63, 1-6.
Shang K., Wei B., Cha S.Y., Zhang J.F., Park J.Y., Lee Y.J., Jang H.K. & Kang M. 2021. The occurrence of antimicrobial-resistant Salmonella enterica in hatcheries and dissemination in an integrated broiler chicken operation in Korea. Animals (Basel), 11.
World Health Organization (WHO). 2014. Antimicrobial Resistance Global Report on Surveillance. Avaliable online at: https://www.who.int/publications/i/item/9789241564748.
World Health Organization (WHO). 2022. Global antimicrobial resistance and use surveillance system (GLASS) report 2022. Geneva: World Health Organization; 2022. Licence: CC BY-NC-SA 3.0 IGO.
Zhao S., Qaiyumi S., Friedman S., Singh R., Foley S.L., White D. G., McDermott P. F., Donkar T., Bolin C., Munro S., Baron E. J. & Walker R. D. 2003. Characterisation of Salmonella enterica Serotype Newport Isolated from Humans and Food Animals. J Clin Microbiol, 41, 5366-5371.