1
Amelioration of bleomycin induced pulmonary fibrosis by administration of Salvianolic acid B in mice
VetIt.1703.9039.2

Keywords

Bleomycin
Epithelial‑mesenchymal transition
Mice model
Pulmonary fibrosis
Salvianolic acid B.

How to Cite

Begum, G., Singh, N. D., Leishangthem, G. D., & Banga, H. S. (2022). Amelioration of bleomycin induced pulmonary fibrosis by administration of Salvianolic acid B in mice. Veterinaria Italiana, 58(1), 87–101. https://doi.org/10.12834/VetIt.1703.9039.2

Abstract

Pulmonary fibrosis is the end‑stage manifestation of wide range of respiratory diseases and during pulmonary fibrosis, pulmonary inflammation and epithelial‑mesenchymal transition (EMT) play important roles. Salvianolic acid B (SAB) from the herb Salviae miltiorrhiza has been reported to possess an excellent anti‑inflammatory, antifibrotic and antioxidant activity. The present study aimed to investigate the ameliorative effect of SAB on bleomycin induced pulmonary fibrosis in mice. Adult albino mice were divided as SHAM/control group (saline alone), BLM group (bleomycin @ 1mg/kg intratracheally once) and SAB groups (BLM challenged once and SAB administration in three dosages @ 5, 10 and 15 mg/kg intraperitoneally daily for 30 days). Lungs wet/dry ratio and protein concentration in bronchoalveolar lavage fluid, MPO activity, oxidative stress markers, hydroxyproline assay, levels of inflammatory cytokines (TNF‑α, IL‑6 and TGF‑β1), NF‑κB activity, histopathology, immunostaining (E‑cadherin, vimentin and alpha ‑smooth muscle actin) and ultrastructural changes were studied. SAB showed anti‑inflammatory and anti‑fibrotic effects through inhibition of inflammatory cell infiltration, alveolar structure disruption, and collagen deposition and the expression of several fibrogenic cytokines. SAB also up‑regulate E‑cadherin and down‑regulated vimentin and alpha‑smooth muscle actin expression. In conclusion, Salvianolic acid B is effective in alleviating the BLM induced lung fibrosis through suppression of oxidative stress, inflammation, histological, ultrastructural changes and EMT.
https://doi.org/10.12834/VetIt.1703.9039.2
VetIt.1703.9039.2

References

References

Borzone G., Moreno R., Urrea R., Meneses M., Oyarzún M. & Lisboa C. 2001. Bleomycin-induced chronic lung damage does not resemble human idiopathic pulmonary fibrosis. Am J Respir Crit Care Med, 163(7), 1648-1653.

Chen F., Wang C., Sun J., Wang J., Wang L. & Li J. 2016. Salvianolic acid B reduced the formation of epidural fibrosis in an experimental rat model. J Orthop Surg Res, 11, 141.

Chen L.J., Ye H., Zhang Q., Li F.Z., Song L.J., Yang J., Mu Q., Rao S.S., Cai P.C., Xiang F., Zhang J.C., Su Y., Xin J.B. & Ma W.L. 2015. Bleomycin induced epithelial-mesenchymal transition (EMT) in pleural mesothelial cells. Toxicol Appl Pharmacol, 283(2), 75-82.

Cheng D.S., Han W., Chen S.M., Sherrill T.P., Chont M., Park G.Y., Sheller J.R., Polosukhin V.V., Christman J.W., Yull F.E. & Blackwell T.S. 2007. Airway epithelium controls lung inflammation and injury through the NF-kappa B pathway. J Immunol, 178(10), 6504-6513.

Cheng F., Shen Y., Mohanasundaram P., Lindström M., Ivaska J., Ny T. & Eriksson J.E. 2016. Vimentin coordinates fibroblast proliferation and keratinocyte differentiation in wound healing via TGF-β-Slug signaling. Proc Natl Acad Sci USA, 113(30), E4320-E4327.

Choi J., Park S.Y. & Joo C.K. 2007. Transforming growth factor-beta1 represses E-cadherin production via slug expression in lens epithelial cells. Invest Ophthalmol Vis Sci , 48, 2708-2718.

Dejana E., Orsenigo F. & Lampugnani M.G. 2008. The role of adherens junctions and VE-cadherin in the control of vascular permeability. J Cell Sci, 121(Pt 13), 2115-2122.

Desmoulière A. 1995. Factors influencing myofibroblast differentiation during wound healing and fibrosis. Cell Biol Int , 19(5), 471-476.

Izbicki G., Segel M.J., Christensen T.G., Conner M.W. & Breuer R. 2002. Time course of bleomycin-induced lung fibrosis. Int J Exp Pathol, 83(3), 111-119.

Jinde K., Nikolic-Paterson D.J., Huang X.R., Sakai H., Kurokawa K., Atkins R.C. & Lan H.Y. 2001. Tubular phenotypic change in progressive tubulointerstitial fibrosis in human glomerulonephritis. Am J Kidney Dis, 38(4), 761-769.

Kagalwalla A.F., Akhtar N., Woodruff S.A., Rea B.A., Masterson J.C., Mukkada V., Parashette K.R., Du J., Fillon S., Protheroe C.A., Lee J.J., Amsden K., Melin-Aldana H., Capocelli K.E., Furuta G.T. & Ackerman S.J. 2012. Eosinophilic esophagitis: epithelial mesenchymal transition contributes to esophageal remodeling and reverses with treatment. J Allergy Clin Immunol , 129, 1387-1396.

Kaul S.C., Taira K., Pereira-Smith O.M. & Wadhwa R. 2002. Mortalin: present and prospective. Exp Gerontol, 37(10-11), 1157-1164.

Leishangthem G.D., Mabalirajan U., Singh V.P., Agrawal A., Ghosh B. & Dinda A.K. 2013. Ultrastructural changes of airway in murine models of allergy and diet-induced metabolic syndrome. ISRN Allergy,261297. doi: 10.1155/2013/261297

Liu B., Cao B., Zhang D., Xiao N., Chen H., Li G.Q., Peng S.C. & Wei L.Q. 2016. Salvianolic acid B protects against paraquat-induced pulmonary injury by mediating Nrf2/Nox4 redox balance and TGF-β1/Smad3 signaling. Toxicol Appl Pharmacol , 309, 111–120.

Liu M., Zheng M., Xu H., Liu L., Li Y., Xiao W., Li J. & Ma E. 2015. Anti-pulmonary fibrotic activity of salvianolic acid B was screened by a novel method based on the cyto-biophysical properties. Biochem Biophys Res Commun, 468 (1-2), 214-220.

Liu Q., Chu H., Ma Y., Wu T., Qian F., Ren X., Tu W., Zhou X., Li Jin., Wu W. & Wang J. 2016. Salvianolic Acid B attenuates experimental pulmonary fibrosis through inhibition of the TGF-β signaling pathway. Sci Rep, 6, 27610.

Liu Y., Liu W., Song X.D. & Zuo J. 2005. Effect of GRP75/mthsp70/PBP74/mortalin overexpression on intracellular ATP level, mitochondrial membrane potential and ROS accumulation following glucose deprivation in PC12 cells. Mol Cell Biochem, 268(1-2), 45-51.

Lomas N.J, Watts K.L., Akram K.M., Forsyth N.R. & Spiteri M.A. 2012. Idiopathic pulmonary fibrosis: immunohistochemical analysis provides fresh insights into lung tissue remodelling with implications for novel prognostic markers. Int J Clin Exp Pathol , 5, 58-71.

Mabalirajan U., Ahmad T., Leishangthem G.D., Joseph D.A., Dinda A.K., Agrawal A. & Ghosh B. 2010. Beneficial effects of high dose of L-arginine on airway hyperresponsiveness and airway inflammation in a murine model of asthma. J Allergy Clin Immunol , 125, 626-635.

Maretta M., Toth S., Jonecova Z., Kruzliak P., Kubatka P., Pingorova S. & Vesela J. 2014. Immunohistochemical expression of MPO, CD163 and VEGF in inflammatory cells in acute respiratory distress syndrome: a case report. Int J Clin Exp Pathol , 7(7), 4539-4544.

Martin W.J. & Kachel D.L. 1987. Bleomycin-induced pulmonary endothelial cell injury: evidence for the role of iron-catalyzed toxic oxygen-derived species. J Lab Clin Med, 110, 153-158.

Moeller A., Ask K., Warburton D., Gauldie J. & Kolb M. 2008. The bleomycin animal model: a useful tool to investigate treatment options for idiopathic pulmonary fibrosis. Int J Biochem Cell Biol, 40, 362-382.

Nishitani Y., Iwano M., Yamaguchi Y., Harada K., Nakatani K., Akai Y., Nishino T., Shiiki H., Kanauchi M., Saito Y. & Neilson E.G. 2005. Fibroblast-specific protein 1 is a specific prognostic marker for renal survival in patients with IgAN. Kidney Int , 68(3), 1078-1085.

Oikonomou N., Harokopos V., Zalevsky J., Valavanis C. & Kotanidou A. 2006. Soluble TNF Mediates the Transition from Pulmonary Inflammation to Fibrosis. PLoS ONE , 1(1), e108.

Qu M., Zhou Z., Xu S., Chen C., Yu Z. & Wang D. 2011. Mortalin overexpression attenuates beta-amyloid-induced neurotoxicity in SH-SY5Y cells. Brain Res, 1368, 336-345.

Rafii R., Juarez M.M., Albertson T.E. & Chan A.L. 2013. A review of current and novel therapies for idiopathic pulmonary fibrosis. J Thorac Dis, 5, 48-73.

Rastaldi M.P., Ferrario F., Giardino L., Dell'Antonio G., Grillo C., Grillo P., Strutz F., Müller G.A., Colasanti G. & D'Amico G. 2002. Epithelial-mesenchymal transition of tubular epithelial cells in human renal biopsies. Kidney Int, 62(1), 137-146.

Ricciardolo F.L., Sterk P.J., Gaston B. & Folkerts G. 2004. Nitric oxide in health and disease of the respiratory system. Physiol Rev, 84(3), 731-765.

Rosenbloom J., Macarak E., Piera-Velazquez S., Jimenez S.A. 2017. Human fibrotic diseases: Current challenges in fibrosis research. Methods Mol Biol, 1627,1–23.

Saito F., Tasaka S., Inoue K., Miyamoto K., Nakano Y., Ogawa Y., Yamada W., Shiraishi Y., Hasegawa N., Fujishima S., Takano H. & Ishizaka A. 2008. Role of Interleukin-6 in Bleomycin-Induced Lung Inflammatory Changes in Mice. Am J Respir Cell Mol Biol, 38, 566-571.

Shafiq-ur-Rehman S. 1984. Lead-induced regional lipid peroxidation in brain. Toxicol Lett, 21, 333-337.

Singh N.D., Sharma A.K., Dwivedi P., Leishangthem G.D., Rahman S., Reddy J. & Kumar M. 2013. Effect of feeding graded doses of citrinin on apoptosis and oxidative stress in male Wistar rats through the F1 generation. Toxicol Ind Health, 32, 385–397.

Sugiura H. & Ichinose M. 2011. Nitrative stress in inflammatory lung diseases. Nitric Oxide, 25(2),138-144.

Tatler A.L. & Jenkins G. 2012. TGF-β activation and lung fibrosis. Proc Am Thorac Soc, 9(3),130-136.

Todd N.W., Luzina I.G. & Atamas S.P. 2012. Molecular and cellular mechanisms of pulmonary fibrosis. Fibrogenesis Tissue Repair, 5(1), 11.

Wadhwa R., Taira K. & Sunil C.K. 2002. An Hsp70 family chaperone, mortalin/mthsp70/PBP74/Grp75: what, when, and where? Cell Stress Chaperones, 7(3), 309-316.

Wang S.X., Hu L.M., Gao X.M., Guo H. & Fan G.W. 2010. Anti-inflammatory activity of salvianolic acid B in microglia contributes to its neuroprotective effect. Neurochem Res, 35(7), 1029-1037.

Ware L.B. & Matthay M.A. 2000. The acute respiratory distress syndrome. N Engl J Med, 342(18), 1334-1349.

Willems P.H., Rossignol R., Dieteren C.E., Murphy M.P. & Koopman W.J. 2015. Redox homeostasis and mitochondrial dynamics. Cell Metab, 22(2), 207-218.

Willis B.C. & Borok Z. 2007. TGF-beta-induced EMT: mechanisms and implications for fibrotic lung disease. Am J Physiol Lung Cell Mol Physiol, 293(3), L525-L534.

Wu Y.J., Hong C.Y., Lin S.J., Wu P. & Shiao M.S. 1998. Increase of vitamin E content in LDL and reduction of atherosclerosis in cholesterol-fed rabbits by a water-soluble antioxidant-rich fraction of Salvia miltiorrhiza. Arterioscler Thromb Vasc Biol, 18(3), 481-486.

Xia Z.B., Yuan Y.J., Zhang Q.H., Li H., Dai J.L. & Min J.K. 2018. Salvianolic Acid B suppresses inflammatory mediator levels by downregulating NF-κB in a rat model of rheumatoid arthritis. Med Sci Monit, 24, 2524-2532.

Yang C.W., Liu H., Li X.D., Sui S.G. & Liu Y.F. 2018. Salvianolic acid B protects against acute lung injury by decreasing TRPM6 and TRPM7 expressions in a rat model of sepsis. J Cell Biochem, 119(1), 701-711.

Yang L., Hu J., Hao H.Z., Yin Z., Liu G. & Zou X.J. 2015. Sodium tanshinone IIA sulfonate attenuates the transforming growth factor-β1-induced differentiation of atrial fibroblasts into myofibroblasts in vitro. Int J Mol Med, 35, 1026–1032.

Copyright (c) 2022 Veterinaria Italiana