The incidence of aggressive behavior in cats naturally infected with Feline Immunodeficiency Virus (FIV) and its interaction with FIV disease progression

Authors

  • Amin Azadian Department of Veterinary Clinical Science, Division of Small Animal Internal Medicine, Faculty of Veterinary Medicine, University of Tabriz http://orcid.org/0000-0002-3528-845X
  • Mohsen Hanifeh Department of Veterinary Clinical Science, Division of Small Animal Internal Medicine, Faculty of Veterinary Medicine, University of Tabriz
  • Masoumeh Firouzamandi Department of Veterinary Pathobiology, Division of Molecular Biology, Faculty of Veterinary Medicine, University of Tabriz

DOI:

https://doi.org/10.12834/VetIt.1795.9466.3

Keywords:

Feline immunodeficiency virus, Cat, Aggression, DNA, PCR

Abstract

A study was undertaken to determine the possible interaction between aggressive behavior and Feline immunodeficiency virus (FIV) disease progression based on semi‑quantitative viral load levels and health status in naturally FIV‑infected cats. FIV status was determined in ninety‑six owned and stray cats, using nested polymerase chain reaction (PCR). Aggressive tendencies were assessed based on observation and the cats’ demeanor as determined by the owners and shelter caretakers. Results showed that forty‑seven cats (49%) were PCR‑positive for FIV infection and all aggressive cats were FIV‑positive (100%). FIV infection was significantly linked to extreme aggressive tendencies and the extremely aggressive FIV‑infected cats were more likely to have an unhealthy status compared to the non‑aggressive individuals (p = 0.022). There was also a significant difference (p = 0.012) in the mean Cycle threshold (Ct) values between the aggressive and non‑aggressive FIV‑infected cats and also between the unhealthy FIV‑infected cats with extreme aggressive tendencies and the healthy FIV‑infected individuals without aggression (p = 0.001). Accordingly, results indicated that parameters associated with FIV disease progression are directly linked to aggression. The possible impact of FIV on the behavioral pattern of naturally infected cats should not be underestimated. However, there is an urgent need to conduct more experiments to support the assumptions about the possible exacerbation of aggression tendencies in naturally FIV‑infected cats following the direct effect of FIV through the course of the infection.

References

Ackley C.D., Yamamoto J.K., Levy N., Pedersen N.C. & Cooper M.D. 1990. Immunologic abnormalities in pathogen‑free cats experimentally infected with feline immunodeficiency virus. J Virol, 64 (11), 5652‑5655.

Addie D.D., Dennis J.M., Toth S., Callanan J.J., Reid S. & Jarrett O. 2000. Long‑term impact on a closed household of pet cats of natural infection with feline coronavirus, feline leukemia virus and feline immunodeficiency virus. Vet Rec, 146 (15), 419‑424.

Ahola M.K., Vapalahti K. & Lohi H. 2017. Early weaning increases aggression and stereotypic behaviour in cats. Scientific Reports, 7 (1), 10412.

Bande F., Arshad S.S., Hassan L., Zakaria Z., Sapian N.A., Rahman N.A. & Alazawy A. 2012. Prevalence and risk factors of feline leukaemia virus and feline immunodeficiency virus in peninsular Malaysia. BMC Vet Res, 8 (1), 33.

Bęczkowski P.M., Litster A., Lin T.L., Mellor D.J., Willett B.J. & Hosie M.J. 2015. Contrasting clinical outcomes in two cohorts of cats naturally infected with feline immunodeficiency virus (FIV). Vet Microbiol, 176 (1‑2), 50‑60.

Beebe A.M., Dua N., Faith T.G., Moore P.F., Pedersen N.C. & Dandekar S. 1994. Primary stage of feline immunodeficiency virus infection: viral dissemination and cellular targets. J Virol, 68 (5), 3080‑3091.

Bienzle D., Reggeti F., Wen X., Little S., Hobson J. & Kruth S. 2004. The variability of serological and molecular diagnosis of feline immunodeficiency virus infection. Canadian Vet J, 45 (9), 753.

Bradshaw J.W. & Hall S.L. 1999. Affiliative behaviour of related and unrelated pairs of cats in catteries: a preliminary report. Appl Animal Behaviour Sc, 63 (3), 251‑255.

Callanan J.J., Thompson H., Toth S.R., O'Neil B., Lawrence C.E., Willett B. & Jarrett O. 1992. Clinical and pathological findings in feline immunodeficiency virus experimental infection. Vet Immunol Immunopathol, 35 (1‑2), 3‑13.

Désiré N., Dehée A., Schneider V., Jacomet C., Goujon C., Girard P.‑M. & Nicolas J.‑C. 2001. Quantification of human immunodeficiency virus type 1 proviral load by a TaqMan real‑time PCR Assay. J Clin Microbiol, 39 (4), 1303‑1310.

Dow S.W., Poss M.L. & Hoover E.A. 1990. Feline immunodeficiency virus: a neurotropic lentivirus. J Acquired Immune Deficiency Syndromes, 3 (7), 658‑668.

English R., Nelson P., Johnson C.M., Nasisse M., Tompkins W.A. & Tompkins M.B. 1994. Development of clinical disease in cats experimentally infected with feline immunodeficiency virus. J Infect Dis, 170 (3), 543‑552.

Fromont E., Artois M., Langlais M., Courchamp F. & Pontier D. 1997. Modelling the feline leukemia virus (FeLV) in natural populations of cats (Felis catus). Theoretical Population Biology, 52 (1), 60‑70.

Gates M.C., Vigeant S. & Dale A. 2017. Prevalence and risk factors for cats testing positive for feline immunodeficiency virus and feline leukaemia virus infection in cats entering an animal shelter in New Zealand. New Zealand Vet J, 1‑7.

Gleich S.E., Krieger S. & Hartmann K. 2009. Prevalence of feline immunodeficiency virus and feline leukaemia virus among client‑owned cats and risk factors for infection in Germany. J Feline Med Surgery, 11 (12), 985‑992.

Goldkamp C.E., Levy J.K., Edinboro C.H. & Lachtara J.L. 2008. Seroprevalences of feline leukemia virus and feline immunodeficiency virus in cats with abscesses or bite wounds and rate of veterinarian compliance with current guidelines for retrovirus testing. J Am Vet Med Ass, 232 (8), 1152‑1158.

Gueudin M., Damond F., Braun J., Taïeb, A., Lemée, V., Plantier J.C. & Simon F. 2008. Differences in proviral DNA load between HIV‑1‑and HIV‑2‑infected patients. AIDS, 22 (2), 211‑215.

Hartmann K. 2012. Clinical aspects of feline retroviruses: a review. Viruses, 4 (11), 2684‑2710.

Hartmann K., Griessmayr P., Schulz B., Greene C.E., Vidyashankar A.N., Jarrett O. & Egberink H.F. 2007. Quality of different in‑clinic test systems for feline immunodeficiency virus and feline leukaemia virus infection. J Feline Med Surgery, 9 (6), 439‑445.

Hoffmann‑Fezer G., Thum J., Ackley C., Herbold M., Mysliwietz J., Thefeld S. & Kraft W. 1992. Decline in CD4+ cell numbers in cats with naturally acquired feline immunodeficiency virus infection. J Virol, 66 (3), 1484‑1488.

Ishida T. & Tomoda I. 1990. Clinical staging of feline immunodeficiency virus infection. Japanese J Vet Sci, 52 (3), 645‑648.

Klein D., Janda P., Steinborn R., Müller M., Salmons B. & Günzburg W.H. 1999. Proviral load determination of different feline immunodeficiency virus isolates using real‐time polymerase chain reaction: influence of mismatches on quantification. Electrophoresis, 20 (2), 291‑299.

Lara V.M., Taniwaki, Sueli Akemi, & Araújo Júnior, João Pessoa. 2008. Occurrence of feline immunodeficiency virus infection in cats. Ciência Rural, 38 (8), 2245‑2249.

Leal R.O., Gil S., Duarte A., McGahie D., Sepúlveda N., Niza M.M. & Tavares L. 2015. Evaluation of viremia, proviral load and cytokine profile in naturally feline immunodeficiency virus infected cats treated with two different protocols of recombinant feline interferon omega. Res Vet Sci, 99, 87‑95.

Little S.E. 2005. Feline immunodeficiency virus testing in stray, feral, and client‑owned cats of Ottawa. Can Vet J, 46 (10), 898‑901.

Luo W., Yang H., Rathbun K., Pau C.P. & Ou C.Y. 2005. Detection of human immunodeficiency virus type 1 DNA in dried blood spots by a duplex real‑time PCR assay. J Clin Microbiol, 43 (4), 1851‑1857.

Malnati M.S., Scarlatti G., Gatto F., Salvatori F., Cassina G., Rutigliano T. & Lusso P. 2008. A universal real‑time PCR assay for the quantification of group‑M HIV‑1 proviral load. Nature Protocols, 3 (7), 1240‑1248.

Matteucci D., Baldinotti F., Mazzetti P., Pistello M., Bandecchi P., Ghilarducci R. & Bendinelli M. 1993. Detection of feline immunodeficiency virus in saliva and plasma by cultivation and polymerase chain reaction. J Clin Microbiol, 31 (3), 494‑501.McDonnel S.J., Sparger E.E. & Murphy B.G. 2013. Feline immunodeficiency virus latency. Retrovirology, 10, 69.

Meeker R.B. 2007. Feline immunodeficiency virus neuropathogenesis: from cats to calcium. J Neuroimmune Pharmacol, 2 (2), 154‑170.

Meeker R.B. & Hudson L. 2017. Feline immunodeficiency virus neuropathogenesis: a model for HIV‑induced CNS inflammation and neurodegeneration. Vet Sci, 4 (1), 14.

Miyazawa T., Tomonaga K., Kawaguchi Y. & Mikami T. 1994. The genome of feline immunodeficiency virus. Archives of Virol, 134 (3), 221‑234.

Pedersen N.C. & Barlough J.E. 1991. Clinical overview of feline immunodeficiency virus. JAVMA, 199 (10), 1298.

Pedersen N.C., Ho E.W., Brown M.L. & Yamamoto J.K. 1987. Isolation of a T‑lymphotropic virus from domestic cats with an immunodeficiency‑like syndrome. Science, 235, 790‑793.

Pedersen N.C., Leutenegger C.M., Woo J. & Higgins J. 2001. Virulence differences between two field isolates of feline immunodeficiency virus (FIV‑APetaluma and FIV‑CPGammar) in young adult specific pathogen free cats. Vet Immunol Immunopathol, 79 (1), 53‑67.

Phillips T.R., Prospero‑Garcia O., Puaoi D.L., Lerner D.L., Fox H.S., Olmsted R.A. & Elder J.H. 1994. Neurological abnormalities associated with feline immunodeficiency virus infection. J General Virol, 75 (5), 979‑987.

Pinches M.D., Helps C.R., Gruffydd‑Jones T.J., Egan K., Jarrett O. & Tasker S. 2007. Diagnosis of feline leukaemia virus infection by semi‑quantitative real‑time polymerase chain reaction. J Feline Med Surg, 9 (1), 8‑13.

Podell M., HayesDagger K., OglesbeeDagger M. & MathesDagger L. 1997. Progressive encephalopathy associated with CD4/CD8 inversion in adult FIV‑infected cats. J Acquired Immune Deficiency Syndromes, 15 (5), 332‑340.

Ryan G., Klein D., Knapp E., Hosie M.J., Grimes T., Mabruk M.J. & Callanan J.J. 2003. Dynamics of viral and proviral loads of feline immunodeficiency virus within the feline central nervous system during the acute phase following intravenous infection. J Virol, 77 (13), 7477‑7485.

Shiramizu B., Gartner S., Williams A., Shikuma C., Ratto‑Kim S., Watters M. & Valcour V. 2005. Circulating proviral HIV DNA and HIV‑associated dementia. AIDS (London, England), 19 (1), 45.

Stelow E.A., Bain M.J. & Kass P.H. 2016. The relationship between coat color and aggressive behaviors in the domestic cat. J Appl Anim Welfare Sci, 19 (1), 1‑15.

Takahashi A., Flanigan M.E., McEwen B.S. & Russo S.J. 2018. Aggression, social stress, and the immune system in humans and animal models. Frontiers Behavioral Neuroscience, 12, 56.

Vapalahti K., Virtala A.M., Joensuu T.A., Tiira K., Tähtinen J. & Lohi H. 2016. Health and behavioral survey of over 8000 Finnish cats. Frontiers Vet Sci, 3, 70.

Winkler I.G., Löchelt M. & Flower R.L.P. 1999. Epidemiology of feline foamy virus and feline immunodeficiency virus infections in domestic and feral cats: a seroepidemiological study. J Clin Microbiol, 37 (9), 2848‑2851.

Yamamoto J.K., Hansen H., Ho E.W., Morishita T.Y., Okuda T., Sawa T.R. & Pedersen N.C. 1989. Epidemiologic and clinical aspects of feline immunodeficiency virus infection in cats from the continental United States and Canada and possible mode of transmission. JAVMA, 194 (2), 213‑220.

Published

2020-12-01

How to Cite

Azadian, A., Hanifeh, M., & Firouzamandi, M. (2020). The incidence of aggressive behavior in cats naturally infected with Feline Immunodeficiency Virus (FIV) and its interaction with FIV disease progression. Veterinaria Italiana, 56(3), 169–176. https://doi.org/10.12834/VetIt.1795.9466.3

Issue

Topics*

Paper