Paratuberculosis at European scale: an overview from 2010 to 2017
VetIt_1829_9692_3.pdf

Supplementary Files

Figure 1
Figure 2
Table I
Figure 3
Table II
Figure 4
Figure 5
Supplementary material

Keywords

Paratuberculosis
Europe
Epidemiological status
Spatial distribution
Multilevel model
WAHIS

How to Cite

Fanelli, A., Buonavoglia, D., Pleite, C. M. C., & Tizzani, P. (2020). Paratuberculosis at European scale: an overview from 2010 to 2017. Veterinaria Italiana, 56(1), 13-21. https://doi.org/10.12834/VetIt.1829.9692.3

Abstract

Mycobacterium avium subsp. paratuberculosis (MAP) is the etiological agent of paratuberculosis (PTB), a disease affecting domestic and wild ruminants. MAP may also play a zoonotic role in Crohn’s disease. Although both governments and industries are carrying out programmes to prevent and control the infection, there is a lack of harmonization across Europe. Moreover, the success of these programmes is influenced by the current lack of sensitivity of the diagnostic tests used. For these reasons, it is complex to evaluate the overall epidemiological situation of this disease. This study describes the European distribution of PTB from 2010 to 2017 using the information reported by Member Countries to the OIE. Countries were classified in three categories (‘Absent’, ‘Epizootic’, ‘Enzootic’) depending on the disease epidemiology, and the trend of countries reporting the disease presence was computed throughout the study period. A multilevel model with random slope was built for twelve countries, with complete reporting history. Most of the countries (57.44%) were classified as ‘Enzootic’. The percentage of countries reporting the disease presence slightly increased along the study period, probably due to the improvement of PTB monitoring, rather than to a deterioration of the epidemiological situation of the disease in Europe. Results of the model account for different dynamics in the number of outbreaks reported by ‘Enzootic’ and ‘Epizootic’ countries.
https://doi.org/10.12834/VetIt.1829.9692.3
VetIt_1829_9692_3.pdf

References

Akaike H. 1973. Information theory and an extension of the maximum likelihood principle. In Proc. the 2nd International Symposium on Information Theory (Petrov B.N. & Csaki F., eds). Akadémiai Kiadó, Budapest, 267‑281.

Bates D., Mächler M., Bolker B. & Walker S. 2015. Fitting linear mixed‑effects models using lme4. J Stat Softw, 67 (1), 1‑48.

Behr M.A. & Collins M. 2010. Paratuberculosis: organism, disease, control. CABI, 375 pp.

Benedictus G. & Kalis C.J.H. 2003. Paratuberculosis: eradication, control and diagnostic methods. Acta Vet Scand, 44 (3‑4), 231‑241.

Carta T., Álvarez J., Pérez de la Lastra J.M. & Gortázar C. 2013. Wildlife and paratuberculosis: a review. Res Vet Sci, 94 (2), 191‑197.

Chiodini R.J. & Hermon‑Taylor J. 1993. The thermal resistance of Mycobacterium paratuberculosis in raw milk under conditions simulating pasteurization. J Vet Diagn Invest, 5 (4), 629‑631.

Corn J.L., Manning E.J.B., Sreevatsan S. & Fischer J.R. 2005. Isolation of Mycobacterium avium subsp. paratuberculosis from free‑ranging birds and mammals on livestock premises. Appl Environ Microbiol, 71 (11), 6963‑6967.

Fridriksdottir V., Gunnarsson E., Sigurdarson S. & Gudmundsdottir K.B. 2000. Paratuberculosis in Iceland: epidemiology and control measures, past and present. Vet Microbiol, 77 (3‑4), 263‑267.

Frössling J., Wahlström H., Ågren E.C.C., Cameron A., Lindberg A. & Sternberg Lewerin S. 2013. Surveillance system sensitivities and probability of freedom from Mycobacterium avium subsp. paratuberculosis infection in swedish cattle. Prev Vet Med, 108 (1), 47‑62.

Garcia A.B. & Shalloo L. 2015. Invited review: the economic impact and control of paratuberculosis in cattle. J Dairy Sci, 98 (8), 5019‑5039.

Griffiths M. 2002. Mycobacterium paratuberculosis. In Foodborne pathogens hazards, risk analysis and control. (De W., Blackburn C. & McClure P.J., eds). Woodhead Publishing, Abington Cambridge, 489‑497.

Khol J.L. & Baumgartner W. 2012. Examples and suggestions for the control of paratuberculosis in European Cattle. Jpn J Vet Res, 60 (Supplement), S1‑S7.

Kuiken T., Ryser‑Degiorgis M.P., Gavier‑Widén D. & Gortázar C. 2011. Establishing a European network for wildlife health surveillance. Rev Sci Tech Off Int Epiz, 30 (3), 755‑761.

Kuznetsova A., Brockhoff P.B. & Christensen R.H.B. 2017. lmerTest package: tests in linear mixed effects models. J Stat Softw, 82 (13), 1‑26.

Luini M., Foglia E., Andreoli G., Tamba M. & Arrigoni N. 2013. Control and certification plan for bovine paratuberculosis of cattle: criteria and cost‑benefit analysis. Large Anim Rev, 19 (6), 257‑265.

Manning E.J.B. & Collins M.T. 2001. Mycobacterium avium subsp. paratuberculosis: pathogen, pathogenesis and diagnosis. Rev Sci Tech Off Int Epiz, 20 (1), 133‑150.

Maroudam V., Mohana Subramanian B., Praveen Kumar P. & Dinahakar Raj G. 2015. Paratuberculosis: diagnostic methods and their constraints. J Veterinar Sci Technol, 6, 259.

Nielsen S.S. 2009. Programmes on paratuberculosis in Europe. In Proc. 10 ICP, Minneapolis, 101‑108.

Nielsen S.S., Jepsen Ø.R. & Aagaard K. 2007. Control programme for paratuberculosis in Denmark. Bull Int Dairy J, 410, 23‑29.

Ott S.L., Wells S.J. & Wagner B.A. 1999. Herd‑level economic losses associated with Johne’s Disease on US dairy operations. Prev Vet Med, 40, 179‑192.

QGIS Development Team. 2017. QGIS Geographic Information System. Open Source Geospatial Foundation.

R Core Team. 2018. A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.r‑project.org/.

Rathnaiah G., Zinniel D.K., Bannantine J.P., Stabel J.R., Gröhn Y.T., Collins M.T. & Barletta R.G. 2017. Pathogenesis, molecular genetics, and genomics of Mycobacterium avium subsp. paratuberculosis, the etiologic agent of Johne’s disease. Front Vet Sci, 4 (187), 1‑13.

Sarkar D. 2008. Lattice: multivariate data visualization with R. Springer, New York.

Shaughnessy L.J., Smith L.A., Evans J., Anderson D., Caldow G., Marion G., Low J.C. & Hutchings M.R. 2013. High prevalence of paratuberculosis in rabbits is associated with difficulties in controlling the disease in cattle. Vet J, 198 (1), 267‑270.

Stevenson K., Alvarez J., Bakker D., Biet F., De Juan L., Denham S., Dimareli Z., Dohmann K., Gerlach G.F., Heron I., Kopecna M., May L., Pavlik I., Sharp J.M., Thibault V.C., Willemsen P., Zadoks R.N. & Greig A. 2009. Occurrence of Mycobacterium avium subspecies paratuberculosis across host species and European countries with evidence for fransmission between wildlife and domestic ruminants. BMC Microbiol, 9 (212), 1‑13.

Stryhn H., De Vliegher S. & Barkema H.W. 2006. Contextual multilevel models: effects and correlations at multiple Levels. In Proc. 11th International Symposium on Veterinary Epidemiology and Economics (ISVEE). Cairns.

Vallat B. 2008. Improving wildlife surveillance for its protection while protecting us from the diseases it transmits. https://www.oie.int/eng/PDF_WORD_Vademecum/DELEGUE_FINAL/Slide%207/EN/Faune_Sauvage/15072008/Improving%20wildlife%20surveillance.pdf.

Whittington R., Donat K., Weber M.F. ... de Waard J.H. 2019. Control of paratuberculosis: who, why and how. A review of 48 countries. BMC Vet Res, 15 (1), 198.

World Organisation for Animal Health (OIE). 2018. Paratuberculosis (Johne’s Disease). In The Manual of Diagnostic Tests and Vaccines for Terrestrial Animals, 27th Ed. Office International des Epizooties, Paris, 544‑559.