1
Study of the proviral load levels and mRNA expression of cytokines in peripheral blood mononuclear cells and somatic milk cells in cattle with different BLV infection profiles
VetIt_2718_20143_3

Keywords

BLV
cytokines
milk somatic cells
PBMC
proviral load

How to Cite

Ladera Gómez, M. E., Nieto Farias, M. V., Vater, A., Ceriani, M. C., & Dolcini, G. L. (2023). Study of the proviral load levels and mRNA expression of cytokines in peripheral blood mononuclear cells and somatic milk cells in cattle with different BLV infection profiles. Veterinaria Italiana, 59(1). https://doi.org/10.12834/VetIt.2718.20143.3

Abstract

The retrovirus bovine leukemia virus (BLV) might produce abnormal immune function, associated with susceptibility to developing other infectious diseases, including mastitis. This study aimed to determine the proviral load and cytokines gene expression in peripheral blood mononuclear cells (PMBC) and milk somatic cells (SC) in BLV-infected and non-infected cattle. Of 27 BLV-infected cows in PBMC, 17 (62.96%) had a high proviral load (HPL), and 10 (37.04%) had a low proviral load (LPL). All SC samples had low proviral load (LPL-SC). Higher IFN-γ and IL-10 expression, and lower IL-12 and IL-6 expression, were found in PBMC from BLV-infected compared to BLV non-infected cattle. Moreover, higher IFN-γ, IL-12, and IL-6 expression, and lower IL-10 expression were observed in cattle with LPL-PBMC compared to HPL-PBMC. In milk samples, lower IFN-γ and higher IL-12 mRNA expression were observed in LPL-SC compared to BLV non-infected cattle in SC. IL-10 and IL-6 expression mRNA was significantly lower in LPL-SC than in SC from BLV non-infected cattle. This study shows that milk SC maintains lower proviral load levels than PBMC. This first report on Th1 and Th2 cytokines expression levels in SC may be relevant to future control strategies for BLV infection, mastitis, and udder health management.

https://doi.org/10.12834/VetIt.2718.20143.3
VetIt_2718_20143_3

References

Alhussien M.N. & Dang A.K. 2018. Milk somatic cells, factors influencing their release, future prospects, and practical utility in dairy animals: An overview.

Alluwaimi A.M. 2004. The cytokines of bovine mammary gland: Prospects for diagnosis and therapy. Res Vet Sci, 77, 211–222.

Alluwaimi A.M. & Cullor J.S. 2002. Cytokines Gene Expression Patterns of Bovine Milk During Middle and Late Stages of Lactation. J Vet Med, B, 105–110.

Almeida P.E., Weber P.S.D., Burton J.L., Tempelman R.J., Steibel J.P. & Zanella A.J. 2007. Gene expression profiling of peripheral mononuclear cells in lame dairy cows with foot lesions. Vet Immunol Immunopathol, 120, 234–245.

Bartlett P.C., Norby B., Byrem T.M., Parmelee A., Ledergerber J.T. & Erskine R.J. 2013. Bovine leukemia virus and cow longevity in Michigan dairy herds. J Dairy Sci, 96, 1591–1597.

Buehring G.C., Kramme P.M. & Schultz R.D. 1994. Evidencie for Bovine Leukemia Virus in Mammary Epithelial Cells of Infected Cows. Lab Invest, 71(3), 359–365.

della Libera A.M., de Souza F.N., Batista C.F., Santos B.P., de Azevedo L.F.F., Ramos Sanchez E.M., et al. 2015. Effects of bovine leukemia virus infection on milk neutrophil function and the milk lymphocyte profile. Vet Res, 46.

di Rienzo J.A., Gonzalez L.A. & Tablada E.M. 2009. fgStatistics–Statistic software for the analysis of experiments of functional genomics.

Diehl S. & Rincón M. 2002. The two faces of IL-6 on Th1/Th2 differentiation. Mol Immunol, 39, 531–536.

Duhamel G.E., Bernoco D., Davis W.C. & Osburn B.I. 1987. Distribution of T and B lymphocytes in mammary dry secretions, colostrum and blood of adult dairy cattle. Vet Immunol Immunopathol, 14, 101–122.

Erskine R.J., Bartlett P.C., Byrem T.M., Render C.L., Febvay C. & Houseman J.T. 2012. Association between bovine leukemia virus, production, and population age in Michigan dairy herds. Journal of Dairy Science, 95, 727–734.

Farias M.V.N., Lendez P.A., Marin M., Quintana S., Martínez-Cuesta L., Ceriani M.C., et al. 2016. Toll-like receptors, IFN-γ and IL-12 expression in bovine leukemia virus-infected animals with low or high proviral load. Res Vet Sci, 107, 190–195.

Frie M.C. & Coussens P.M. 2015. Bovine leukemia virus: A major silent threat to proper immune responses in cattle. Veterinary Immunology and Immunopathology, 163, 103–114.

Gillet N., Florins A., Boxus M., Burteau C., Nigro A., Vandermeers F., et al. 2007. Mechanisms of leukemogenesis induced by bovine leukemia virus: Prospects for novel anti-retroviral therapies in human. Retrovirology, 4.

Giraudo J., Bérgamo Enrique, Schneider Manuel, Magnano Gabriel, Macias Analía, Sticotti Erika, et al. 2010. Bovine Enzootic Leukosis. (www.produccion-animal.com.ar accessed on).

Gutiérrez S.E., Dolcini G.L., Arroyo G.H., Rodriguez Dubra C., Ferrer J.F., & & Esteban E.N. 2001. Development and evaluation of a highly sensitive and specific blocking enzyme-linked immunosorbent assay and polymerase chain reaction assay for diagnosis of bovine leukemia virus infection in cattle. AJVR, 62, 1571–1577.

Hernández J.M. & Bedolla J.L.C. 2008. Importance of the somatic cells count in the quality of milk. REDVET Rev Electrónica Vet, 9, 1–34.

Hopkins S.G. & DiGiacomo R.F. 1997. Natural transmission of bovine leukemia virus in dairy and beef cattle. The Veterinary Clinics of North America Food Anim Pract, 13, 107–128.

Jaworski J.P., Porta N.G., Gutierrez G., Politzki R.P., Álvarez I., Galarza R., et al. 2016. Short communication: Relationship between the level of bovine leukemia virus antibody and provirus in blood and milk of cows from a naturally infected herd. J Dairy Sci, 99, 5629–5634.

Juliarena M.A., Barrios C.N., Ceriani M.C. & Esteban E.N. 2016. Hot topic: Bovine leukemia virus (BLV)-infected cows with low proviral load are not a source of infection for BLV-free cattle. J Dairy Sci, 99.

Juliarena M.A., Gutiérrez S.E. & Ceriani C. 2007. Determination of proviral load in bovine leukemia virus–infected cattle with and without lymphocytosis. Am J Vet Res, 68(11).

Kabeya H., Ohashi K. & Onuma M. 2001. Host Immune Responses in the Course of Bovine Leukemia Virus Infection. J Vet Med Sci, 63, 703–708.

Kakinuma, Maeda Y., Hiromichi O., Konnai S. & Oikawa M. 2014. Bovine Leukemia virus titer and leukocyte population associated with mastitis in peri-parturient dairy cows. Intern J Appl Res Vet Med, 12(3), 239–244.

Konnai S., Usui T., Ohashi K. & Onuma M. 2003. The rapid quantitative analysis of bovine cytokine genes by real-time RT-PCR. Vet Microbiol, 94, 283–294.

Kuckleburg C.J., Chase C.C., Nelson E.A., Marras S.A.E., Dammen M.A. & Christopher-Hennings J. 2003. Detection of bovine leukemia virus in blood and milk by nested and real-time polymerase chain reactions. Brief Communications J Vet Diagn Invest, 15, 72–76.

Lima E. de S., Blagitz M.G., Batista C.F., Alves A.J., Fernandes A.C. de C., Ramos Sanchez E.M., et al. 2021. Milk Macrophage Function in Bovine Leukemia Virus-Infected Dairy Cows. Front Vet Sci, 8.

Lv G., Wang H., Wang J., Lian S. & Wu R. 2021. Effect of BLV Infection on the Immune Function of Polymorphonuclear Neutrophil in Dairy Cows. Front Vet Sci, 8.

Mariño B., Nogues M., Iguzquiza I., Gutierrez S., Rodriguez N., Esteban E., et al. 2003. Prevalencia de tambos infectados con el virus de la leucosis bovina (BLV) mediante determinación de anticuerpos en leche por ELISA 108. Rev FAVE , 2, 117–121.

Motton D.D. & Buehring G.C. 2003. Bovine leukemia virus alters growth properties and casein synthesis in mammary epithelial cells. J Dairy Sci, 86, 2826–2838.

Ohira K., Nakahara A., Konnai S., Okagawa T., Nishimori A., Maekawa N., et al. 2016. Bovine leukemia virus reduces anti-viral cytokine activities and NK cytotoxicity by inducing TGF-β secretion from regulatory T cells. Immunity, Inflammation and Disease, 4, 52–63.

OIE. 2021. Enzootic Bovine Leukosis. In Manual of Diagnostic Tests and Vaccines for Terrestrial Animals (World Organization for Animal Health, ed). Paris, France.

Okuda K., Sakumoto R., Okamoto N., Acosta T.J., Abe H., Okada H., et al. 2010. Cellular localization of genes and proteins for tumor necrosis factor-α (TNF), TNF receptor types I and II in bovine endometrium. Mol Cell Endocrinol, 330, 41–48.

Ott S.L., Johnson R. & Wells S.J. 2003. Association between bovine-leukosis virus seroprevalence and herd-level productivity on US dairy farms. Preventive Veterinary Medicine, 61, 249–262.

Pfaffl M.W. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res, 29, 0.

Pfaffl M.W., Horgan G.W. & Dempfle L. 2002. Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res, 30.

Polat M., Takeshima S.N. & Aida Y. 2017. Epidemiology and genetic diversity of bovine leukemia virus. Virology Journal, 14, 1–16.

Pyeon D., O’reilly K.L. & Splitter G.A. 1996. Increased Interleukin-10 mRNA Expression in Tumor-Bearing or Persistently Lymphocytotic Animals Infected with Bovine Leukemia Virus. J Virol, 70, 5706–5710.

Riollet C., Rainard P. & Poutrel B. 2000. Cells and Cytokines in Inflammatory Secretions of Bovine Mammary Gland. Adv Exp Med Biol, 247–258.

Sandev N., Koleva M., Binev R. & Ilieva D. 2004. Influence of enzootic bovine leukosis virus upon the incidence of subclinical mastitis in cows at a different stage of infection. Veterinarski Arhiv, 74, 411–416.

Schultz L.H. 1977. Somatic Cells in Milk-Physiological Aspects and Relationship to Amount and Composition of Milk. J Food Prot, 40, 125–131.

SENASA. 2017. Servicio Nacional de Sanidad y Calidad Agroalimentaria. Programa Argetino de Calidad de la leche.

Trono K.G., Pérez-Filgueira D.M., Duffy S., Borca M. v & Carrillo C. 2001. Seroprevalence of bovine leukemia virus in dairy cattle in Argentina: comparison of sensitivity and specificity of different detection methods. Vet Microbiol, 235–248.

Waldvogel A.S., Hediger-Weithaler B.M., Eicher R., Zakher A., Zarlenga D.S., Gasbarre L.C., et al. 2000. Interferon-g and Interleukin-4 mRNA expression by peripheral blood mononuclear cells from pregnant and non-pregnant cattle seropositive for bovine viral diarrhea virus. Vet Immunol Immunopathol, 77, 201–212.

Watanabe A., Murakami H., Kakinuma S., Murao K., Ohmae K., Isobe N., et al. 2019. Association between bovine leukemia virus proviral load and severity of clinical mastitis. J Vet Med Sc. , 2019.

Watanuki S., Takeshima S.N., Borjigin L., Sato H., Bai L., Murakami H., et al. 2019. Visualizing bovine leukemia virus (BLV)-infected cells and measuring BLV proviral loads in the milk of BLV seropositive dams. Vet Res, 50.

Werling D., Collins R.A., Taylor G. & Howard C.J. 2002. Cytokine responses of bovine dendritic cells and T cells following exposure to live or inactivated bovine respiratory syncytial virus. J Leukoc Biol, 72, 297–304.

Yang Y., Fan W., Mao Y., Yang Z., Lu G., Zhang R., et al. 2016. Bovine leukemia virus infection in cattle of China: Association with reduced milk production and increased somatic cell score. J Dairy Sci, 99, 3688–3697.

Yoshikawa H., Xie B., Oyamada T., Hiraga A. & Yoshikawa T. 1997. Detection of Bovine Leukemia Viruses (BLV) in Mammary Tissues of BLV Antibody-Positive Cows Affected by Subclinical Mastitis. J Vet Med Sci, 59, 301–302.

Copyright (c) 2023 Marla Eliana Ladera Gómez, María Victoria Nieto Farias, Adrián Vater, María Carolina Ceriani, Guillermina Laura Dolcini