1
Circulation of classical swine fever virus (CSFV) strains of bovine origin in China and India
VetIt_2757_17907_2

Keywords

Cattle
China
Classical swine fever virus
India
Pestivirus

How to Cite

Giangaspero, M., & Zang, S.-Q. (2023). Circulation of classical swine fever virus (CSFV) strains of bovine origin in China and India. Veterinaria Italiana, 59(1). https://doi.org/10.12834/VetIt.2757.17907.2

Abstract

The classical swine fever virus (CSFV) is a species member of the family Flaviviridae. CSFV is widely distributed in the world causing a severe impact on pig industry. This pathogen is considered restricted to domestic and wild suids. However, some reports from 2014 to 2018 showed the presence of the CFSV antigen in the bovine species. The virus was found in commercialized batches of fetal bovine serum (FBS) of Chinese origin and in bovine herds in in the provinces of Henan and Jiangsu, China, and in Tamil Nadu and Meghalaya, southern and north‑eastern states of India, respectively. Detection was done using antigen capture ELISA and RT‑PCR tests. In certain cases, animals with natural infection showed clinical signs and reproduction was also affected. Genetic characterization was performed considering the 5’‑UTR sequences of the bovine strains. In addition, the entire CSFV E2 genomic region could be amplified from two positive animals. The bovine strains were genetically related to the Chinese CSFV live attenuated hog cholera lapinized vaccine (HCLV) strain used in pigs, sharing sequence characteristics. The vaccine strain HCLV was widely used in China to protect bovines and yaks from bovine viral diarrhea, and, as a possible consequence, inducing an adaptation in cattle and a further natural diffusion. Furthermore, a contaminant strain from China was genetically distant from all other previously described genotypes of the CSFV. This suggests also the occurrence of micro evolutive step in the species related to geographical segregation. These observations deserve attention and further investigations, especially relevant in countries where CSFV control and eradication strategies are applied.

https://doi.org/10.12834/VetIt.2757.17907.2
VetIt_2757_17907_2

References

Ahuja A., Bhattacharjee U., Chakraborty A.K., Karam A., Ghatak S., Puro K., Das S., Shakuntala I., Srivastava N., Ngachan S.V. & Sen A. 2015. Complete genome sequence of classical Swine Fever virus subgenogroup 2.1 from assam, India. Genome Announc., 3 (1).

Beer M., Goller K.V., Staubach C. & Blome S. 2015. Genetic variability and distribution of Classical swine fever virus. Animal Health Research Reviews, 16 (1), 33–39.

Biró J., Oláh P. & Palatka Z. 1966. Attempt to adapt the lapinized hog cholera virus strain "Suvac" to sheep. Acta Vet. Acad. Sci. Hung., 16(3), 293-9.

Chenna R., Sugawara H., Koike T., Lopez R., Gibson T.J., Higgins D.G. & Thompson J.D. 2003. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res., 31, 3497– 3500.

Center for Food Security and Public Health (CFSPH). 2015. Classical Swine Fever. Factsheets www.cfsph.iastate.edu

Chakraborty A.K., Karam A., Mukherjee P., Barkalita L., Borah P., Das S., Sanjukta R., Puro K., Ghatak S., Shakuntala I., Sharma I., Laha R.G. & Sen A. 2018. Detection of classical swine fever virus E2 gene in cattle serum samples from cattle herds of Meghalaya. Virus Disease, 29 (1), 89–95.

Dreier S., Zimmermann B., Moennig V. & Wilke, I.G., 2007. A sequencedatabase allowing automated genotyping of classical swine fever virus isolates. J. Vir. Methods, 140, 95-99.

Giangaspero M. & Apicella C. 2014. Improved Palindromic Nucleotide Substitutions software version 2.0. Genotyping based on the secondary structure alignment in the 5’ untranslated region of Pestivirus RNA. Journal of Bioinformatics and Intelligent Control, 3 (1), 39-64.

Giangaspero M. & Apicella C. 2018. Bovine viral diarrhea virus type 1 current taxonomy according to palindromic nucleotide substitutions method. J. Vir. Methods, 256, 37-76.

Giangaspero M. & Harasawa R. 2007. Numerical taxonomy of genus Pestivirus based on palindromic nucleotide substitutions in the 5’ untranslated region. J. Virol. Methods, 146, 375-388.

Giangaspero M. & Harasawa R. 2011. Species Characterization in the genus Pestivirus according to Palindromic Nucleotide Substitutions in the 5’ Untranslated Region. J. Virol. Methods, 174 (1-2), 166-172.

Giangaspero M., Kumar S.K. & Zhang S.Q. 2017. Classical swine fever virus in cattle. Vet. Rec., 181 (3), 73.

Giangaspero M., Yesilbag K. & Apicella C. 2018. Who’s who in the Bovine viral diarrhea virus type 1 species: Genotypes L and R. Virus Research, 256, 50-75.

Giangaspero M. & Zhang S. 2020. Genomic characteristics of classical swine sever virus strains of bovine origin according to primary and secondary sequence structure analysis. Open Veterinary Journal, 10 (1): 94-115.

Gong W., Zhang L., Lu Z., Jia J., Wang M., Peng Z., Guo H., Shi J. & Tu C. 2016. Complete genome sequence of a novel sub-subgenotype 2.1g isolate of classical swine fever virus from China. Arch. Virol., 161 (9), 2613-2617.

Grebennikova T.V., Zaberezhnyi A.D., Sergeev V.A., Biketov S.F., Aliper T.I. & Nepoklonov E.A. 1999. Genetic characteristics of the KC vaccine strain of hog cholera virus: comparative analysis of the primary sequence of surface glycoprotein E(rns), E1, and E2 genes. Mol. Gen. Mikrobiol. Virusol., 2, 34-40.

Harasawa R. & Giangaspero M. 1998. A novel method for pestivirus genotyping based on palindromic nucleotide substitutions in the 5'-untranslated region. J. Vir. Methods, 70, 225-230.

Harasawa R. & Giangaspero M. 1999. Genetic variation in the 5'end and NS5B regions of classical swine fever virus genome among Japanese isolates. Microbiol. Immunol., 43 (4), 373-379.

Harasawa R., Giangaspero M., Ibata G. & Paton P.J. 2000. Giraffe strain of pestivirus. Its taxonomic status based on the 5' untranslated region. Microbiol. Immunol., 44 (11), 915-921.

Hurtado A., Garcia-Perez A.L., Aduriz G. & Juste R.A. 2003. Genetic diversity of ruminant pestiviruses from Spain. Virus Res., 92, 67-73.

Jiang D.L., Liu G.H., Gong W.J., Li R.C., Hu Y.F., Tu C. & Yu X.L. 2013. Complete genome sequences of classical Swine Fever virus isolates belonging to a new subgenotype, 2.1c, from hunan province, china. Genome Announc., 1 (1), E00080-12.

Kamboj A., Patel C.L., Chaturvedi V.K., Saini M. & Gupta P.K. 2014. Complete genome sequence of an Indian field isolate of classical Swine Fever virus belonging to subgenotype 1.1. Genome Announc., 2 (5).

Li X., Xu Z., He Y., Yao Q., Zhang K., Jin M., Chen H. & Qian, P. 2006. Genome comparison of a novel classical swine fever virus isolated in China in 2004 with other CSFV strains. Virus Genes, 33 (2), 133-142.

Lin Y.J., Chien M.S., Deng M.C. & Huang C.C. 2007. Complete sequence of a subgroup 3.4 strain of classical swine fever virus from Taiwan. Virus Genes, 35 (3), 737-744.

Liu Y., Yin Z., Liu S., Han P., Hua S., Yu Y., Shi Q., Ding X., Liu X. & Yu R. 2003. Study on the prevention of bovine viral diarrhoea-mucosal disease of the yak. Chinese Journal of Preventive Veterinary Medicine, 6.

Loan R.W. & Storm M.M. 1968. Propagation and transmission of hog cholera virus in non-porcine hosts. American Journal of Veterinary Research, 29, 807-811.

Lowings P., Ibata G., Needham J. & Paton D., 1996. Classical swine fever virus diversity and evolution. J. Gen. Virol., 77, 1311–1321.

Meyers G., Rümenapf T. & Thiel H-J. 1989. Molecular cloning and nucleotide sequence of the genome of hog cholera virus. Virology, 171, 555-567.

Mohamed, T.M. 2004. BVD Report UAE, 2004. Available from: https://www.researchgate.net/publication/236141896_BVD_ReportUAE2004 [accessed Feb 14 2022].

Moormann R.M.J., van Gennip H.G.P., Miedema G.K.W., Hulst M.M. & van Rijn P.A. 1996. Infectious RNA Transcribed from an engineered full-length cDNA template of the genome of a pestivirus. J. Virol., 70, 763-770.

Patil S.S., Hemadri D., Shankar B.P., Raghavendra A.G., Veeresh H., Sindhoora B., Chandan S., Sreekala K., Gajendragad M.R. & Prabhudas K. 2010. Genetic typing of recent classical swine fever isolates from India. Curr. Microbiol., 141 (3-4), 367-373.

Paton D.J., McGoldrick A., Greiser-Wilke I., Parchariyanon S., Song J.Y., Liou P.P., Stadejek T., Lowings J.P., Björklund H. & Belák S. 2000. Genetic typing of classical swine fever virus. Vet. Microbiol., 73 (2–3), 137–157.

Perez L.J., Arce H.D., Perera C.L., Rosell R., Frias M.T., Percedo M.I., Tarradas J., Dominguez P., Nunez J.I. & Ganges L. 2012. Positive selection pressure on the B/C domains of the E2-gene of classical swine fever virus in endemic areas under C-strain vaccination. Infect. Genet. Evol., 12, 1405–1412.

Postel A., Schmeiser S., Bernau J., Meindl-Boehmer A., Pridotkas G., Dirbakova Z., Mojzis M. & Becher P. 2012. Improved strategy for phylogenetic analysis of classical swine fever virus based on full-length E2 encoding sequences. Vet. Res., 43 (1), 50.

Risatti G.R., Borca M.V., Kutish G.F., Lu Z., Holinka L.G., French R.A., Tulman E.R. & Rock D.L. 2005. The E2 glycoprotein of classical swine fever virus is a virulence determinant in swine. J. Virol., 79 (6), 3787-3796.

Ruggli N., Moser C., Mitchell D., Hofmann M. & Tratschin J.D. 1995. Baculovirus expression and affinity purification of protein E2 of classical swine fever virus strain Alfort/187. Virus Genes, 10, 115-126.

Saitou N. & Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol., 4, 406-425.

Shen H., Pei J., Bai J., Zhao M., Ju C., Yi L., Kang Y., Zhang X., Chen L., Li Y., Wang J. & Chen J. 2011. Genetic diversity and positive selection analysis of classical swine fever virus isolates in south China. Virus Genes, 43 (2), 234-242.

Shimizu M. & Kumagai T. 1989. Experimental infection of pregnant goats with swine fever virus. Vet. Microbiol., 20, 207-214.

Tomar N., Gupta A., Arya R.S., Somvanshi R., Sharma V. & Saikumar G. 2015. Genome sequence of classical Swine Fever virus genotype 1.1 with a genetic marker of attenuation detected in a continuous porcine cell line. Genome Announc., 3 (2).

Wang W., Shi X., Tong Q., Wu Y., Xia M.Q., Ji Y., Xue W. & Wu H. 2014. A bovine viral diarrhea virus type 1a strain in China: isolation, identification, and experimental infection in calves. Virology Journal, 11, 8.

World Organisation for Animal Health 2014. Terrestrial Manual Chapter 2.8.3.

World Organisation for Animal Health 2017. Terrestrial Code, Chapter 15.2.

Xue F., Zhu Y.M., Li J., Zhu L.C., Ren X.G., Feng J.K., Shi H.F. & Gao Y.R. 2010. Genotyping of bovine viral diarrhea viruses from cattle in China between 2005 and 2008. Vet. Microbiol., 143 (2-4), 379-383.

Zhang S.Q., Tan B., Guo L., Wang F.X., Zhu H.W., Wen Y.J. & Cheng S. 2014. Genetic diversity of bovine viral diarrhea viruses in commercial bovine serum batches of Chinese origin. Infect. Genet. Evol., 27, 230-233.

Zhou W., Gao S., Podgorska K., Stadejek T., Qiu H.J., Yin H., Drew T. & Liu L. 2014. Rovac is the possible ancestor of the Russian lapinized vaccines LK-VNIVViM and CS strains but not the Chinese strain (C-strain) vaccine against classical swine fever. Vaccine, 32 (49), 6639-6642.

Copyright (c) 2023 Massimo Giangaspero, Shu-Qin Zang