Toxigenic Staphylococcus aureus in some animal-originated food products marketed in Turkey: presence and Public Health concerns

Authors

  • Fulden Karadal Nigde Omer Halisdemir University
  • Nurhan Ertas Onmaz Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
  • Harun Hizlisoy Department of Veterinary Public Health, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
  • Yeliz Yildirim Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
  • Serhat Al Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
  • Zafer Gonulalan Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
  • Cemalettin Bagci Department of Food Processing, Bor Vocational School, Nigde Omer Halisdemir University, Nigde, Turkey

DOI:

https://doi.org/10.12834/VetIt.3022.21271.2

Keywords:

Animal source foods, ELISA, multiplex PCR, toxigenic S. aureus.

Abstract

This study aimed to detect the presence of Staphylococcus aureus in some animal source food (ASF) including emulsified meat products (sausage and salami), dry fermented meat product (soudjouk), semi dry meat product (pastrami) and raw chicken meat. Sixty six  (38.8%) of 170 samples were found to be positive for S. aureus. It was determined that S. aureus was found in 17 (56.6%) salami, 27 (54%) raw chicken meat, 9 (30%) soudjouk, 9 (30%) pastrami, 4 (13.3%) sausage samples. Staphylococcal enterotoxins (SEs) were identified in 5 out of 66 (7.5 %) isolates food matrices including 3 (4.5%) SEA, 2 (3.03%) SEC. The sea and sec genes were detected in 3 (4.5%) of 66 isolates. The results of this study highlight the need to provide suitable control strategies concerning production, sales, and storage to prevent the spread of enterotoxigenic S. aureus isolates in ASF. The key contribution of this study is its revelation of the presence of S. aureus in animal products sold in Turkish local markets, highlighting the potential public health risks associated with animal foods.

References

Abdalrahman, L.S., Stanley, A., Wells, H. & Fakhr, M.K. 2015. Isolation, virulence, and antimicrobial resistance of Methicillin-Resistant Staphylococcus aureus (MRSA) and Methicillin Sensitive Staphylococcus aureus (MSSA) strains from Oklahoma retail poultry meats. Int. J. Environ. Res. Public. Health., 12(6), 6148-6161. DOI: 10.3390/ijerph120606148.

Ahmad-Mansour, N., Loubet, P., Pouget, C., Dunyach-Remy, C., Sotto, A., Lavigne, J. P., & Molle, V. 2021. Staphylococcus aureus toxins: An update on their pathogenic properties and potential treatments. Toxins, 13(10), 677. https://doi.org/10.3390/toxins13100677.

Akkaya L, Gök V, Kara R, Yaman H. 2014. Enterotoxin production by Staphylococcus aureus (A, B, C, D) during the ripening of sucuk (Turkish dry-fermented sausage). CyTA - Journal of Food. 12: 127-33. doi: org/10.1080/19476337.2013.804124.

Al-Bahry, S.N. Mahmoud, I.Y. Al-Musharaf, S.K.& Sivakumar. N. 2014. Staphylococcus aureus contamination during food preparation, processing and handling. Int. J. Chem. Eng. Appl. 5(5), 388– 392. DOI: 10.7763/IJCEA.2014.V5.415.

Alvarez-Astorga, M., Capita, R., Alonso-Calleja, C., Moreno, B., Del, M. & Garcı́a-Fernández, C. 2002. Microbiological quality of retail chicken by-products in Spain. Meat Sci. 62 (1), 45-50. DOI:org/10.1016/S0309-1740(01)00225-X.

Aydin, A., Sudagidan, M., & Muratoglu, K. (2011). Prevalence of staphylococcal enterotoxins, toxin genes and genetic-relatedness of foodborne Staphylococcus aureus strains isolated in the Marmara Region of Turkey. Int. J. Food Microbiol. 148(2), 99-106.. DOI: org/10.1089/fpd.2010.0613.

Balaban, N. & Rasooly, A. 2000. Staphylococcal enterotoxins.. 61, 1–10. DOİ:org/10.1016/S0168-1605(00)00377-9.

Bang, W. Hanson, D.J. & Drake, M.A. 2008. Effect of salt and sodium nitrite on growth and enterotoxin production of Staphylococcus aureus during the production of air-dried fresh pork sausage. J. Food. Prot. 71: 191–195. DOI: 10.4315/0362-028x-71.1.191.

Berry, S. C., Triplett, O. A., Yu, L. R., Hart, M. E., Jackson, L. S., & Tolleson, W. H. 2022. Microcalorimetric Investigations of Reversible Staphylococcal Enterotoxin Unfolding. Toxins, 14(8), 554. https://doi.org/10.3390/toxins14080554.

Calicioglu M, Fatih NG, Buege DR &Luchansky JB. (2001). Validation of a manufacturing process for fermented, semidry Turkish Soudjouk to control Escherichia coli O157:H7. J. Food. Prot; 64: 1156-1161. doi: 10.4315/0362-028x-64.8.1156.

Cha, J.O., Lee, J.K., Jung, Y.H., Yoo, J.I., Park Y.K., Kim, B.S. & Lee, Y.S. (2006). Molecular analysis of Staphylococcus aureus isolates associated with staphylococcal food poisoning in South Korea. J. Appl. Microbiol. 101(4), 864-871. doi:10.1111/j.1365-2672.2006.02957.x.

Correia, L.M.M., Pereira, J.G., Pinto, J.P.A.N., Barcellos, V.C. & Bersot, L.D.S. 2014. Behavior of Staphylococcus aureus and autochthone microbiota in fresh sausages added of sodium nitrite and stored under refrigeration. Ciên. Rural. 44(10), 1880-1885. DOI:10.1590/0103-8478cr20131142.

Cremonesi, P., Luzzana, M., Brasca, M., Morandi, S., Lodi, R., Vimercati, C., Agnellini, D., Caramenti, G., Moroni, P. & Castiglioni, B. 2005. Development of a multiplex PCR assay for the identification of Staphylococcus aureus enterotoxigenic strains isolated from milk and dairy products. Mol. Cell Probes. 19 (5), 299-305. DOI: 10.1016/j.mcp.2005.03.002.

Elmali, M., Yaman, H., Ulukanli, Z., & Tekinsen, K. K. (2007). Microbiological and some chemical features of the pastrami sold in Turkey. Medycyna Weterynaryjna, 63(8), 931.

Gonzalez-Fandos, M.E., Sierra, M., Garcia-Lopez, M.L., Garcia, Fernandez, M.C. & Otero, A. 1999. The influence of manufacturing and drying conditions on the survival and toxin genes of Staphylococcus aureus in two Spanish dry sausages (chorizo and salchichon) Meat Sci. 52, 411-419. DOI: 10.1016/s0309-1740(99)00023-6.

Gungor, C., Barel, M., Dishan, A., Disli, H. B., Koskeroglu, K., & Onmaz, N. E. 2021. From cattle to pastirma: Contamination source of methicillin susceptible and resistant Staphylococcus aureus (MRSA) along the pastirma production chain. LWT, 151, 112130. DOI: 10.1016/j.lwt.2021.112130.

Guven, K., Mutlu, M.B., Gulbandilar, A. & Çakır, P. 2010. Occurence and characterization of Staphylococcus aureus isolated from meat and dairy products consumed in Turkey. J. Food Safety. 30, 196-212. DOI: org/10.1111/j.1745-4565.2009.00200.x.

Hanning, I., Gilmore, D., Pendleton, S., Clement, A., Park, S.H., Scott, E. & Ricke, S.C. 2012. Characterization of Staphylococcus aureus isolates from retail chicken carcasses and pet workers in northwest Arkansas. J. Food Prot. 75: 174–178. DOI: 10.4315/0362-028X.JFP-11-251.

Hassanina, F., Hassana, M., Nada, S., & Badr, S. 2018. Staphylococci in some meat products. BVMJ, 34(1), 1-9.

ISO, (2003), Microbiology of food and animal feeding stuffs - horizontal method for the enumeration of coagulase-positive staphylococci, International Standard Office, EN ISO 6888-1 (Staphylococcus aureus and other species).

Kaban, G & Kaya, M. 2006. Effect of starter culture on growth of Staphylococcus aureus in sucuk. Food Cont. 17 (10): 797–801. doi: org/10.1016/j.foodcont.2005.05.003.

Kitai S., Shimizu A., Kawano J., Sato E., Nakano, C., Kitagawa, H., Fujio, K., Matsumura, K., Yasuda, R., Inamoto, T. 2005. Prevalence and characterization of Staphylococcus aureus and enterotoxigenic Staphylococcus aureus in retail raw chicken meat throughout Japan. J. Vet. Med. Sci. 67(3), 269-274. DOI:org/10.1292/jvms.67.269.

Le Loir, Y.L., Baron, F.& Gautier M. 2003. Staphylococcus aureus and food poisoning. Genet. Mol. Res. 2, 63-76. PMID: 12917803.

Lin, L. Hu, J.Y., Wu, Y., Chen, M., Ou, J. & Ling, Y.W. 2018. Assessment of the inhibitory effects of sodium nitrite, nisin, potassium sorbate, and sodium lactate on Staphylococcus aureus growth and staphylococcal enterotoxin A production in cooked pork sausage using a predictive growth model. FSHW. 7 (1), 83-90. DOI:10.1016/j.fshw.2017.12.003.

Mahyudin, N. A., Sahil, S. M., Radu, S., Mahmud, N. K. & Rashid, A. 2019. Multiple drug resistance among Staphylococcus aureus strains isolated from cutting boards of commercial food premises: A threat to food and public health safety. Journal of Biochemistry, Microbiology and Biotechnology, 7(1), 48-51. DOI: 10.54987/jobimb.v7i1.454.

Mehrotra, M., Wang, G. & Johnson, W.M. 2000. Multiplex PCR for detection of genes for Staphylococcus aureus enterotoxins, exfoliative toxins, Toxic Shock Syndrome Toxin 1, and Methicillin resistance. J. Clin. Microbiol. 38: 1032–1035. PMCID: PMC86330.

Morshdy, A. M. A., Darwish, W. S., El-Dien, W. M. S., & Khalifa, S. M. (2018). Prevalence of multidrug-resistant Staphylococcus aureus and Salmonella Enteritidis in meat products retailed in Zagazig city, Egypt. Slov. Vet. Res, 55(20), 295-300. DOI: https://doi.org/10.26873/SVR-657-2018.

Munson, S. H., Tremaine, M. T., Betley, M. J., & Welch, R. A. (1998). Identification and characterization of staphylococcal enterotoxin types G and I from Staphylococcus aureus. Infect Immun, 66(7), 3337-3348. DOI: 10.1128/IAI.66.7.3337-3348.1998.

Nájera-Sánchez, G., Maldonado-Rodríguez, R., Olvera, P.R. & de la Garza L.M. 2003. Development of two multiplex polymerase chain reactions for the detection of enterotoxigenic strains of Staphylococcus aureus isolated from foods. J. Food. Prot. 66, 1055–1062. DOI: pdf/10.4315/0362-028X-66.6.1055.

Normanno, G., Firinu, A., Virgilio, S., Mula, G., Dambrosio, A., Poggiu, A., Decastelli, L., Mioni, R., Scuota, S., Bolzoni, G., Di Giannatale, E., Salinetti, A.P., La Salandra, G., Bartoli, M., Zuccon, F., Pirino, T., Sias, S., Parisi, A., Quaglia, N.C. & Celano, G.V. 2005. Coagulase-positive Staphylococci and Staphylococcus aureus in food products marketed in Italy. Int. J. Food Microbiol. 98(1), 73-79. DOI: 10.1016/j.ijfoodmicro.2004.05.008.

Oh, S.K., Lee, N., Cho, Y.S., Shin, D.B., Choi, S.Y. & Koo, M. 2007. Occurrence of toxigenic Staphylococcus aureus in ready-to-eat food in Korea. J. Food Prot. 70, 1153–1158. DOI:pdf/10.4315/0362-028X-70.5.1153.

Oliveira, D., Borges, A., & Simões, M. 2018. Staphylococcus aureus toxins and their molecular activity in infectious diseases. Toxins, 10(6), 252. https://doi.org/10.3390/toxins10060252.

Pelisser, M.R., Klein, C.S., Ascoli, K.R., Zotti, T.R. & Arisi, A.C. 2009. Ocurrence of Staphylococcus aureus and multiplex pcr detection of classic enterotoxin genes in cheese and meat products. Braz. J. Microbiol. 40(1), 145–148. DOI:org/10.1590/S1517-83822009000100025.

Regassa, L.B.& Betley, M.J. 1993. High sodium chloride concentrations inhibit staphylococcal enterotoxin C gene (sec) expression at the level of sec mRNA. Infect. Immun. 61, 1581–1585. DOI: 10.1128/iai.61.4.1581-1585.1993.

Rortana, C., Nguyen-Viet, H., Tum, S., Unger, F., Boqvist, S., Dang-Xuan, S. & et.al. 2021. Prevalence of Salmonella spp. and Staphylococcus aureus in chicken meat and pork from Cambodian Markets. Pathogens, 10(5), 556. DOI: 10.3390/pathogens10050556.

Samappito, W., Leenanon, B., & Levin, R. E. (2011). Microbiological Characteristics of ‘‘Mhom’’, a Thai Traditional Meat Sausage. The Open Food Science Journal, 5, 31-36.

Sharma, N.K., Rees, C.E.D. & Dodd C.E.R. 2000. Development of a single-reaction multiplex pcr toxin typing assay for Staphylococcus aureus strains. Appl. Environ. Microbiol. 66 (4): 1347–1353. DOI:10.1128/AEM.66.4.1347-1353.2000.

Soriano, J.M., Font, G., Rico, H., Molto, J.C. & Manes, J. 2002. Incidence of enterotoxigenic Staphylococci and their toxins in food. J. Food. Prot. 65: 857–860. DOI: 10.4315/0362-028X-65.5.857.

Syne, S., Ramsubhag, A.& Adesiyun, A.A. 2013. Microbiological hazard analysis of ready-to-eat meats processed at a food plant in Trinidad, West Indies. Infect. Ecol. Epidemiol. 3, 10-340. DOI: 10.3402/iee.v3i0.20450.

TFC. 2019. Turkish Food Codex Meat and Meat Products Communiqué (Communiqué No. 2018/52) Official Gazette, 30670, Ministry of Food, Agriculture and Livestock, Ankara, 2019.

Tsutsuura, S., Shimamura, Y.& Murata, M. 2013. Temperature dependence of the production of staphylococcal enterotoxin A by Staphylococcus aureus. Biosci. Biotechnol. Biochem. 77, 30–37. DOI: 10.1271/bbb.120391. Epub 2013 Jan 7.

Wang, W., Baloch, Z., Jiang, T., Zhang, C., Peng, Z., Li, F. & et al. 2017. Enterotoxigenicity and antimicrobial resistance of Staphylococcus aureus isolated from retail food in China. Frontiers in Microbiology, 8, 2256. DOI: 10.3389/fmicb.2017.02256. eCollection 2017.

Yetim H, Sagdic O, Doğan M & Ockerman HW. 2006. Sensitivity of three pathogenic bacteria to Turkish cemen paste and its ingredients. Meat Sci. 74: 354-358. doi: 10.1016/j.meatsci.2006.04.001.

Yildirim, Y., Onmaz, N.E., Gonulalan, Z., Al, S., Yıldırım A.& Karadal, F. 2017. Microbiological quality of pastrami and associated surfaces at the point of sale in Kayseri, Turkey. Public Health. 146,152–158. DOI: 10.1016/j.puhe.2017.01.003. Epub 2017 Feb 16.

Zeaki, N., Cao, R., Skandamis, P.N., Rådström, P.& Schelin, J. 2014. Assessment of high and low enterotoxin producing Staphylococcus aureus strains on pork sausage. Int. J. Food Microbiol. 182–183. 44–50. DOI: 10.1016/j.ijfoodmicro.2014.05.010.

Zeaki, N., Rådström, P. & Schelin, J. 2015. Evaluation of potential effects of NaCl and sorbic acid on staphylococcal enterotoxin A formation. Microorganisms. 3, 551–566. DOI:10.3390/microorganisms3030551

Downloads

Published

2024-03-31

How to Cite

Karadal, F. ., Onmaz, N. E., Hizlisoy, H., Yildirim, Y., Al, S., Gonulalan, Z., & Bagci, C. (2024). Toxigenic Staphylococcus aureus in some animal-originated food products marketed in Turkey: presence and Public Health concerns. Veterinaria Italiana, 60(1). https://doi.org/10.12834/VetIt.3022.21271.2

Issue

Topics*

Paper