1
Meat juice as a feasible alternative sample for tuberculosis surveillance in large game
PDF

Keywords

immunological diagnosis
red deer
wild boar
serology

How to Cite

Abrantes, A. C. ., Risco, D., Carvalho, M., Cerrato, R., Fernández-Llario, P. ., & Vieira-Pinto, M. (2024). Meat juice as a feasible alternative sample for tuberculosis surveillance in large game. Veterinaria Italiana, 60(1). https://doi.org/10.12834/VetIt.3132.22735.2

Abstract

In hunted animals, quality of blood samples may often be compromised. Alternative samples, such as meat juice, may offer an advantage to perform serological tests. This study evaluates if meat juice is a feasible alternative sample to perform the Tuberculosis ELISA test in hunted large game. Between 2017 and 2022, 175 samples were collected from 97 animals (14 red deer + 83 wild boar) in Portugal and Spain. Cohen's kappa coefficient was calculated at 0.71, pointing out a good agreement using 156 paired samples. The sensitivity of the ELISA test with serum was 37.6%, considering Tuberculosis-like lesions (TBL) detected during the initial examination (26 TBL+/ELISA+ in a total of 78 serum samples). Using meat juice as matrix, the sensitivity increased to 37.5% (33 TBL+/ELISA+ in 97 meat juice samples). According to the agreement score and sensitivity being so close between the two matrices tested, meat juice could be a feasible alternative matrix.

https://doi.org/10.12834/VetIt.3132.22735.2
PDF

References

Abrantes A.C., Serejo J., Vieira-Pinto M. 2021. The Association between Palmer Drought Severity Index Data and Tuberculosis-like Lesions Occurrence in Mediterranean Hunted Wild Boars. Animals. 11(7), 2060.

Álvarez J., Perez A., Bezos J., Marqués S., Grau A., Saez J.L., Mínguez O., Juan L., Domínguez L. 2012. Evaluation of the sensitivity and specificity of bovine tuberculosis diagnostic tests in naturally infected cattle herds using a Bayesian approach. Veterinary Microbiology. 155(1), 38-43.

Aranha J., Abrantes A.C., Gonçalves R., Miranda R., Serejo J., Vieira-Pinto M. 2021. GIS as an epidemiological tool to monitor the spatial–temporal distribution of tuberculosis in large game in a high-risk area in Portugal. Animals, 11(8), 2374.

Barandiaran S., Pérez-Aguirreburualde M.S., Marfil M.J., Martínez-Vivot M., Aznar N., Zumárraga M., Perez A.M. 2019. Bayesian Assessment of the Accuracy of a PCR-Based Rapid Diagnostic Test for Bovine Tuberculosis in Swine. Frontiers in Veterinary Sciences. 6, 204.

Bernitz N., Kerr T.J., Goosen W.J., Chileshe J., Higgitt R.L., Roos E.O., Meiring C., Gumbo R., de Waal C., Clarke C., Smith K., Goldswain S., Sylvester T.T., Kleynhans L., Dippenaar A., Buss P.E., Cooper D.V., Lyashchenko K.P., Warren R.M., van Helden P.D., Parsons S.D.C., Miller M.A. 2021. Review of Diagnostic Tests for Detection of Mycobacterium bovis Infection in South African Wildlife. Frontiers in Veterinary Sciences, 8, 588697.

Fabisiak M., Podgórska K., Skrzypiec E., Szczotka A., Stadejek T. 2013. Detection of porcine circovirus type 2 (PCV2) and porcine reproductive and respiratory syndrome virus (PRRSV) antibodies in meat juice samples from Polish wild boar (Sus scrofa L.). Acta Veterinaria Hungarica. 61(4), 529-536.

Felin E., Jukola E., Raulo S., Fredriksson‐Ahomaa M. 2015. Meat juice serology and improved food chain information as control tools for pork‐related public health hazards. Zoonoses and Public Health. 62(6), 456-464.

Ferreras-Colino E., Moreno I., Cruz-Arnal M., Balseiro A., Acevedo P., Domínguez M., Fernández de Luco D., Gortázar C., Risalde M.A. 2022. Is serology a realistic approach for monitoring red deer tuberculosis in the field? Preventive Veterinary Medicine. 202, 105612.

Gortázar C., Che Amat A., O'Brien D.J. 2015. Open questions and recent advances in the control of a multi‐host infectious disease: Animal tuberculosis. Mammal review. 45(3), 160-175.

Gortázar C., Delahay R.J., Mcdonald R.A., Boadella M., Wilson G.J., Gavier-Widen D., Acevedo P. 2012. The status of tuberculosis in European wild mammals. Mammal Review. 42(3), 193-206.

Infantes-Lorenzo J.A., Moreno I., Roy A., Risalde M.A., Balseiro A., de Juan L., Romero B., Bezos J., Puentes E., Åkerstedt J., Tessema G.T., Gortázar C., Domínguez L., Domínguez M. 2019. Specificity of serological test for detection of tuberculosis in cattle, goats, sheep and pigs under different epidemiological situations. BMC Veterinary Reseach. 15, 70.

Lyashchenko K., Sikar-Gang A., Sridhara A.A., Johnathan-Lee A., Elahi E., Greenwald S., Lambotte P., Esfandiari J., Roos E.O., Kerr T.J., Miller M.A., Thacker T.C., Palmer M.V., Waters W.R. 2021. Use of blood matrices and alternative biological fluids for antibody detection in animal tuberculosis. Veterinary Immunology and Immunopathology. 239, 110303.

Lyashchenko K.P., Greenwald R., Esfandiari J., Chambers M.A., Vicente J., Gortazar C., Santos N., Correia-Neves M., Buddle B.M., Jackson R., O’Brien D.J., Schmitt S., Palmer M.V., Delahay R.J., Waters W.R. 2008. Animal-side serologic assay for rapid detection of Mycobacterium bovis infection in multiple species of free-ranging wildlife. Veterinary microbiology, 132(3-4), 283-292.

McHugh M.L. 2012. Interrater reliability: the kappa statistic. Biochemia medica. 22(3), 276-282.

Meemken D., Tangemann A.H., Meermeier D., Gundlach S., Mischok D., Greiner M., Klein G., Blaha T. 2014. Establishment of serological herd profiles for zoonoses and production diseases in pigs by “meat juice multi-serology”. Preventive Veterinary Medicine. 113(4), 589-598.

Naranjo V., Gortazar C., Vicente J., de La Fuente, J. 2008. Evidence of the role of European wild boar as a reservoir of Mycobacterium tuberculosis complex. Veterinary microbiology, 127(1-2), 1-9.

Nielsen B., Ekeroth L., Bager F., Lind P. 1998. Use of muscle fluid as a source of antibodies for serologic detection of Salmonella infection in slaughter pig herds. Journal of Veterinary Diagnostic Investigation. 10(2), 158-163.

Richomme C., Courcoul A., Moyen J.L., Reveillaud E., Maestrini O., de Cruz K., Drapeau A., Boschiroli M.L. 2019. Tuberculosis in the wild boar: Frequentist and Bayesian estimations of diagnostic test parameters when Mycobacterium bovis is present in wild boars but at low prevalence. PLoS ONE, 14(9): e0222661.

Risco D., Fernández-Llario P., García-Jiménez W.L., Gonçalves P., Cuesta J.M., Martínez R., Sanz C., Sequeda M., Gómez L., Carranza J., de Mendoza J.H. 2013. Influence of Porcine Circovirus Type 2 Infections on Bovine Tuberculosis in Wild Boar Populations. Transboundary and Emerging Diseases. 60, 121-127.

Santos N., Colino E.F., Arnal M.C., de Luco D.F., Sevilla I., Garrido J.M., Fonseca E., Valente A., Balseiro A., Queiros J., Almeida V., Vicente J., Gortazar C., Alves, P.C. 2022. Complementary roles of wild boar and red deer to animal tuberculosis maintenance in multi-host communities. Epidemics, 41, 100633.

Santos N., Richomme C., Nunes T., Vicente J., Alves P.C., de la Fuente J., Correia-Neves M., Boschiroli M.L., Delahay R., Gortázar C. 2020. Quantification of the Animal Tuberculosis Multi-Host Community Offers Insights for Control. Pathogens. 9(6), 421.

Soares-Filho P., Ramalho A.K., de Moura Silva A., Hodon M.A., de Azevedo Issa M., Júnior A.A., Mota P., Silva C.H., dos Reis J.K., Leite R. 2019. Evaluation of post-mortem diagnostic tests' sensitivity and specificity for bovine tuberculosis using Bayesian latent class analysis. Research in Veterinary Science. 125, 14-23.

Thomas R. & Chambers M. 2021. Review of Methods Used for Diagnosing Tuberculosis in Captive and Free-Ranging Non-Bovid Species (2012–2020). Pathogens, 10, 584.

Varela-Castro L., Alvarez V., Sevilla I.A., Barral, M. 2020. Risk factors associated to a high Mycobacterium tuberculosis complex seroprevalence in wild boar (Sus scrofa) from a low bovine tuberculosis prevalence area. PLoS One, 15(4), e0231559.

Vicente J., Höfle U., Garrido J., Fernández-De-Mera I.G., Juste R., Barral M., Gortazar, C. 2006. Wild boar and red deer display high prevalences of tuberculosis-like lesions in Spain. Veterinary research, 37(1), 107-119.

Vicente J., Höfle U., Garrido J.M., Fernández-de-Mera I.G., Acevedo P., Juste R., Barral M., Gortazar C. 2007. Risk factors associated with the prevalence of tuberculosis-like lesions in fenced wild boar and red deer in south central Spain. Veterinary Research. 38(3), 451-64.

Vieira-Pinto M., Fernandes A.R.G., Santos M.H., Marucci G. 2021. Trichinella britovi infection in wild boar in Portugal. Zoonoses and Public Health. 68, 103– 109.

Vieira-Pinto M., Vinhas B., Coelho C. 2014. Initial Examination of Wild Large Game on the Spot—Importance and Rules. Journal of Nutritional Ecology and Food Research. 1, 1–3.

Zanella G., Duvauchelle A., Hars J., Moutou F., Boschiroli M.L., Durand B. 2008. Patterns of lesions of bovine tuberculosis in wild red deer and wild boar. Veterinary Record. 163, 43-47.

Copyright (c) 2024 Ana Carolina Abrantes, David Risco, Miguel Carvalho, Rosario Cerrato, Pedro Fernández-Llario, Madalena Vieira-Pinto