1
Analysis of interferon-gamma producing cells during infections by Yersinia enterocolitica O:9 and Brucella abortus in cattle
PDF

Keywords

Brucella abortus
Cattle
FN-γ T cells
Yersinia enterocolitica O
9

How to Cite

Agnone, A., La Manna, M. P., Vesco, G., Gargano, V., Macaluso, G., Dieli, F., Sireci, G., & Villari, S. (2019). Analysis of interferon-gamma producing cells during infections by Yersinia enterocolitica O:9 and Brucella abortus in cattle. Veterinaria Italiana, 55(2), 149–155. https://doi.org/10.12834/VetIt.1374.7538.2

Abstract

One of the major constraints in the diagnosis of animal brucellosis is the cross-reactivity that occurs between Brucella and Yersinia surface antigens. With the aim to find a method to distinguish Brucella from Yersinia infection, the expansion of interferon gamma producing (IFN-γ+) T cell subsets obtained from peripheral blood mononuclear cells (PBMC) isolated from cattle either infected by Brucella abortus or experimentally immunized with Yersinia enterocolitica O:9 were compared. The lymphocytes were analyzed by flow cytometry after PBMC were in vitro re-exposed to Yersinia or Brucella antigens. The results highlighted a statistically significant difference in the expansion of the CD4+ and CD8+ IFN-γ+ T cells occurring when PBMC of animals immunized with Yersinia are in vitro exposed to Y. enterocolitica O:9 antigen but not to Brucella antigen. This method could thus be suggested in those cases where results obtained by serodiagnosis need to be further clarified.

https://doi.org/10.12834/VetIt.1374.7538.2
PDF

References

Carvalho Neta A.V, Xavier M.N., Paixão T.A., Lage A.P. & Santos R.L. 2010. Pathogenesis of bovine brucellosis. Vet J, 184, 146-155.

Baldwin C.L. & Parent M. 2002. Fundamentals of host immune response against Brucella abortus: what the mouse model has revealed about control of infection. Vet Microbiol, 90, 367-382.

Barquero-Calvo E., Chaves-Olarte E., Weiss D.S., Guzmán-Verri C., Chacón-Díaz C., Rucavado A., Moriyón I. & Moreno E. 2007. Brucella abortus uses a stealthy strategy to avoid activation of the innate immune system during the onset of infection. PLoS One, 2, (7):e631.

Corbel M.J. 1985. Recent advances in the study of Brucellaantigens and serological cross-reactions. Vet Bull, 55, 927-942.

De Jong M.F., Rolan H.G. & Tsolis R.M. 2010. Microreview: innate immune encounters of the (Type) 4th kind: Brucella. Cell Microbiol, 12, 1195-1202.

Denoel P.A., Vo T.K., Weynants V.E., Tibor A., Gilson D., Zygmunt M.S., Limet J.N. & Letesson J.J. 1997. Identification of the major T-cell antigens present in the Brucella melitensis B115 protein preparation, Brucellergene OCB. J Med Microbiol, 46, 801-806.

Guzman E., Price S., Poulsom H. & Hope J. 2012. Bovine γδ T cells: cells with multiple functions and important roles in immunity. Vet Immunol Immunopathol, 148, 161-167.

Kittelberger R., Reichel M.P., Joyce M.A. & Staak C. 1997. Serological crossreactivity between Brucella abortus and Yersinia enterocolitica O:9. III. Specificity of the in vitro antigen-specific gamma interferon test for bovine brucellosis diagnosis in experimentally Yersinia enterocolitica O:9-infected cattle. Vet Microbiol, 57, 361-371.

Ko K.Y., Kim J.W., Her M., Kang S.I., Jung S.C., Cho D.H. & Kim J.Y. 2012. Immunogenic proteins of Brucella abortus to minimize cross reactions in brucellosis diagnosis. Vet Microbiol, 156, 374-380.

La Manna M.P., Agnone A., Villari S., Puleio R., Vitale M., Nicholas R., Sireci G., Dieli F. & Loria G.R. 2011. Expansion of intracellular IFN-γ positive lymphocytes during Mycoplasma agalactiae infection in sheep. Res Vet Sci, 91, 64-67.

Ministero della Salute. Ordinanza 28 maggio 2015. Misure straordinarie di polizia veterinaria in materia di tubercolosi, brucellosi bovina e bufalina, brucellosi ovi-caprina, leucosi bovina enzootica. Off J, 144, 24-06-2015.

Muñoz P.M., Marín C.M., Monreal D., González D., Garin-Bastuji B., Díaz R., Mainar-Jaime R.C., Moriyón I. & Blasco J.M. 2005. Efficacy of several serological tests and antigens for diagnosis of bovine brucellosis in the presence of false-positive serological results due to Yersinia enterocolitica O:9. Clin Diagn Lab Immunol, 12, 141-151.

Nielsen K., Smith P., Widdison J., Gall D., Kelly L., Kelly W. & Nicoletti P. 2004. Serological relationship between cattle exposed to Brucella abortus, Yersinia enterocolitica O:9 and Escherichia coli O157:H7. Vet Microbiol, 100, 25-30.

Olsen S.C. & Palmer M.V. 2014. Advancement of knowledge of Brucella over the past 50 years. Vet Pathol, 51, 1076-1089.

Pappas G., Papadimitriou P., Akritidis N., Christou L. & Tsianos E.V. 2006. The new global map of human brucellosis. Lancet Infect Dis, 6, 91-99.

Seimenis A., Morelli D. & Mantovani A. 2006. Zoonoses in the Mediterranean Region. Ann Ist Super Sanita,42, 437-445.

Skendros P., Pappas G. & Boura P. 2011. Cell-mediated immunity in human brucellosis. Microbes Infect, 13, 134-142.

Skendros P. & Boura P. 2013. Immunity to brucellosis. Rev Sci Tech, 32, 137-147.

Skyberg J.A., Thornburg T., Rollins M., Huarte E., Jutila M.A. & Pascual D.W. 2011. Murine and bovine γδ T cells enhance innate immunity against Brucella abortus infections. PLoS ONE, 6, e21978.

Vitry M.A., De Trez C., Goriely S., Dumoutier L., Akira S., Ryffel B., Carlier Y., Letesson J.J. & Muraille E. 2012. Crucial role of gamma interferon-producing CD4+ Th1 cells but dispensable function of CD8+ T cell, B cell, Th2, and Th17 responses in the control of Brucella melitensis infection in mice. Infect Immun, 80, 4271-4280.

Weynants V., Walravens K., Didembourg C., Flanagan P., Godfroid J., & Letesson J.J. 1998. Quantitative assessment by flow cytometry of T-lymphocytes producing antigen-specific gamma-interferon in Brucella immune cattle. Vet Immunol Immunopathol, 66, 309-320.

Weynants V., Godfroid J., Limbourg B., Saegerman C. & Letesson J.J. 1995. Specific bovine brucellosis diagnosis based on in vitro antigen-specific gamma interferon production. J Clin Microbiol, 3, 706-712