Analysis of interferon-gamma producing cells during infections by Yersinia enterocolitica O:9 and Brucella abortus in cattle
DOI:
https://doi.org/10.12834/VetIt.1374.7538.2Keywords:
Brucella abortus, Cattle, FN-γ T cells, Yersinia enterocolitica O, 9Abstract
One of the major constraints in the diagnosis of animal brucellosis is the cross-reactivity that occurs between Brucella and Yersinia surface antigens. With the aim to find a method to distinguish Brucella from Yersinia infection, the expansion of interferon gamma producing (IFN-γ+) T cell subsets obtained from peripheral blood mononuclear cells (PBMC) isolated from cattle either infected by Brucella abortus or experimentally immunized with Yersinia enterocolitica O:9 were compared. The lymphocytes were analyzed by flow cytometry after PBMC were in vitro re-exposed to Yersinia or Brucella antigens. The results highlighted a statistically significant difference in the expansion of the CD4+ and CD8+ IFN-γ+ T cells occurring when PBMC of animals immunized with Yersinia are in vitro exposed to Y. enterocolitica O:9 antigen but not to Brucella antigen. This method could thus be suggested in those cases where results obtained by serodiagnosis need to be further clarified.
References
Carvalho Neta A.V, Xavier M.N., Paixão T.A., Lage A.P. & Santos R.L. 2010. Pathogenesis of bovine brucellosis. Vet J, 184, 146-155.
Baldwin C.L. & Parent M. 2002. Fundamentals of host immune response against Brucella abortus: what the mouse model has revealed about control of infection. Vet Microbiol, 90, 367-382.
Barquero-Calvo E., Chaves-Olarte E., Weiss D.S., Guzmán-Verri C., Chacón-Díaz C., Rucavado A., Moriyón I. & Moreno E. 2007. Brucella abortus uses a stealthy strategy to avoid activation of the innate immune system during the onset of infection. PLoS One, 2, (7):e631.
Corbel M.J. 1985. Recent advances in the study of Brucellaantigens and serological cross-reactions. Vet Bull, 55, 927-942.
De Jong M.F., Rolan H.G. & Tsolis R.M. 2010. Microreview: innate immune encounters of the (Type) 4th kind: Brucella. Cell Microbiol, 12, 1195-1202.
Denoel P.A., Vo T.K., Weynants V.E., Tibor A., Gilson D., Zygmunt M.S., Limet J.N. & Letesson J.J. 1997. Identification of the major T-cell antigens present in the Brucella melitensis B115 protein preparation, Brucellergene OCB. J Med Microbiol, 46, 801-806.
Guzman E., Price S., Poulsom H. & Hope J. 2012. Bovine γδ T cells: cells with multiple functions and important roles in immunity. Vet Immunol Immunopathol, 148, 161-167.
Kittelberger R., Reichel M.P., Joyce M.A. & Staak C. 1997. Serological crossreactivity between Brucella abortus and Yersinia enterocolitica O:9. III. Specificity of the in vitro antigen-specific gamma interferon test for bovine brucellosis diagnosis in experimentally Yersinia enterocolitica O:9-infected cattle. Vet Microbiol, 57, 361-371.
Ko K.Y., Kim J.W., Her M., Kang S.I., Jung S.C., Cho D.H. & Kim J.Y. 2012. Immunogenic proteins of Brucella abortus to minimize cross reactions in brucellosis diagnosis. Vet Microbiol, 156, 374-380.
La Manna M.P., Agnone A., Villari S., Puleio R., Vitale M., Nicholas R., Sireci G., Dieli F. & Loria G.R. 2011. Expansion of intracellular IFN-γ positive lymphocytes during Mycoplasma agalactiae infection in sheep. Res Vet Sci, 91, 64-67.
Ministero della Salute. Ordinanza 28 maggio 2015. Misure straordinarie di polizia veterinaria in materia di tubercolosi, brucellosi bovina e bufalina, brucellosi ovi-caprina, leucosi bovina enzootica. Off J, 144, 24-06-2015.
Muñoz P.M., Marín C.M., Monreal D., González D., Garin-Bastuji B., Díaz R., Mainar-Jaime R.C., Moriyón I. & Blasco J.M. 2005. Efficacy of several serological tests and antigens for diagnosis of bovine brucellosis in the presence of false-positive serological results due to Yersinia enterocolitica O:9. Clin Diagn Lab Immunol, 12, 141-151.
Nielsen K., Smith P., Widdison J., Gall D., Kelly L., Kelly W. & Nicoletti P. 2004. Serological relationship between cattle exposed to Brucella abortus, Yersinia enterocolitica O:9 and Escherichia coli O157:H7. Vet Microbiol, 100, 25-30.
Olsen S.C. & Palmer M.V. 2014. Advancement of knowledge of Brucella over the past 50 years. Vet Pathol, 51, 1076-1089.
Pappas G., Papadimitriou P., Akritidis N., Christou L. & Tsianos E.V. 2006. The new global map of human brucellosis. Lancet Infect Dis, 6, 91-99.
Seimenis A., Morelli D. & Mantovani A. 2006. Zoonoses in the Mediterranean Region. Ann Ist Super Sanita,42, 437-445.
Skendros P., Pappas G. & Boura P. 2011. Cell-mediated immunity in human brucellosis. Microbes Infect, 13, 134-142.
Skendros P. & Boura P. 2013. Immunity to brucellosis. Rev Sci Tech, 32, 137-147.
Skyberg J.A., Thornburg T., Rollins M., Huarte E., Jutila M.A. & Pascual D.W. 2011. Murine and bovine γδ T cells enhance innate immunity against Brucella abortus infections. PLoS ONE, 6, e21978.
Vitry M.A., De Trez C., Goriely S., Dumoutier L., Akira S., Ryffel B., Carlier Y., Letesson J.J. & Muraille E. 2012. Crucial role of gamma interferon-producing CD4+ Th1 cells but dispensable function of CD8+ T cell, B cell, Th2, and Th17 responses in the control of Brucella melitensis infection in mice. Infect Immun, 80, 4271-4280.
Weynants V., Walravens K., Didembourg C., Flanagan P., Godfroid J., & Letesson J.J. 1998. Quantitative assessment by flow cytometry of T-lymphocytes producing antigen-specific gamma-interferon in Brucella immune cattle. Vet Immunol Immunopathol, 66, 309-320.
Weynants V., Godfroid J., Limbourg B., Saegerman C. & Letesson J.J. 1995. Specific bovine brucellosis diagnosis based on in vitro antigen-specific gamma interferon production. J Clin Microbiol, 3, 706-712