Does a therapeutical dose of ivermectin impairs testicular homeostasis of rats via excessive apoptosis?



How to Cite

Cordeiro, F., Ceglio, F. L., Galvão, N. A., Bonamin, L. V., Bondan, E. F., Kirsten, T. B., & Bernardi , M. M. (2024). Does a therapeutical dose of ivermectin impairs testicular homeostasis of rats via excessive apoptosis?. Veterinaria Italiana, 59(2). https://doi.org/10.12834/VetIt.2692.19722.2


Ivermectin is a medication used to treat parasite infestations in humans and in veterinary medicine. Previously we showed that therapeutical doses of ivermectin impaired spermatogenesis and spermiogenesis in adult rats. The present study was proposed to understand the pathophysiological mechanism that triggered these impairments induced by ivermectin. It was a particular objective to study if ivermectin induced excessive apoptosis. Adult rats were treated with a therapeutical dose of ivermectin (subcutaneously). Their testis was evaluated for the expression of caspase-3 (a marker of apoptosis), using immunohistochemistry techniques. Results revealed that ivermectin treatment increased the expression of caspase-3 (labeled seminiferous tubules and strongly labeled tubules), as well as increased the number of tubules that presented labeled cells in the tubular lumen, compared to the data of the control group. In conclusion, a therapeutical dose of ivermectin induced expressive apoptosis in cells of the seminiferous tubules of rats, affecting the testicular natural homeostasis process, which resulted in the spermatogenesis and spermiogenesis impairments previously reported.



Ahmed A.E., Alshehri A., Al-Kahtani M.A., Elbehairi S.E.I., Alshehri M.A., Shati A.A., et al. 2020. Vitamin E and selenium administration synergistically mitigates ivermectin and doramectin-induced testicular dysfunction in male Wistar albino rats. Biomed Pharmacother, 124, 109841.
Bernardi M.M., Kirsten T.B., Spinosa H.S. & Manzano H. 2011. Ivermectin impairs sexual behavior in sexually naïve, but not sexually experienced male rats. Res Vet Sci, 91, 77–81.
Campbell W.C. 2012. History of avermectin and ivermectin, with notes on the history of other macrocyclic lactone antiparasitic agents. Curr Pharm Biotechnol, 13, 853–65.
Campbell W.C., Lankas G.R. & Gordon L.R. 1989. Ivermectin and Abamectin, 1st ed. (W. . Campbell, ed). Springer-Verlag New York Inc, New York.
Cordeiro F., Gonçalves V., Moreira N., Slobodticov J.I., de Andrade Galvão N., de Souza Spinosa H., et al. 2018. Ivermectin acute administration impaired the spermatogenesis and spermiogenesis of adult rats. Res Vet Sci, 117, 178–186.
Dawson G.R., Wafford K. a, Smith A., Marshall G.R., Bayley P.J., Schaeffer J.M., et al. 2000. Anticonvulsant and adverse effects of avermectin analogs in mice are mediated through the γ-aminobutyric acid(A) receptor. J Pharmacol Exp Ther, 295, 1051–1060.
De Souza Spinosa H., Gerenutti M. & Bernardi M.M. 2000. Anxiolytic and anticonvulsant properties of doramectin in rats: Behavioral and neurochemistric evaluations. Comp Biochem Physiol Pharmacol Toxicol Endocrinol, 127, 359–366.
Du Y., Du Z., Zheng H., Wang D., Li S., Yan Y., et al. 2013. GABA exists as a negative regulator of cell proliferation in spermaogonial stem cells. Cell Mol Biol Lett, 18.
Dunkel L., Hirvonen V. & Erkkilä K. 1997. Clinical aspects of male germ cell apoptosis during testis development and spermatogenesis. Cell Death Differ, 4, 171–179.
Elmore S. 2007. Apoptosis: A Review of Programmed Cell Death. Toxicol Pathol, 35, 495–516.
Erdö S.L., Német L. & Szporny L. 1983. The occurrence of GABA in vas deferens, prostate, epididymis, seminal vesicle and testicle of the rat. Acta Biol Hung, 34, 435–7.
Errington A., Giovanni GD & Crunelli V. 2014. Extrasynaptic GABAA Receptors (A. C. Errington, Giuseppe Di Giovanni, & Vincenzo Crunelli, eds). Springer New York, New York, NY.
Frungieri M.B., Gonzalez-Clavar S.I. & Calandra R.S. 1996. Influence of photoinhibition on GABA and glutamic acid levels, and on glutamate decarboxylase activity in the testis and epididymis of the golden hamster. Int J Androl, 19, 171–178.
Geigerseder C., Doepner R.F.G., Thalhammer A., Krieger A. & Mayerhofer A. 2004. Stimulation of TM3 Leydig cell proliferation via GABA(A) receptors: a new role for testicular GABA. Reprod Biol Endocrinol, 2, 13.
Gonzalez P., A. Gonzalez F. & Ueno K. 2012. Ivermectin in Human Medicine, An Overview of the Current Status of Its Clinical Applications. Curr Pharm Biotechnol, 13, 1103–1109.
Hauet T., Yao Z.-X., Bose H.S., Wall C.T., Han Z., Li W., et al. 2005. Peripheral-Type Benzodiazepine Receptor-Mediated Action of Steroidogenic Acute Regulatory Protein on Cholesterol Entry into Leydig Cell Mitochondria. Mol Endocrinol, 19, 540–554.
HE X., ZHANG Y., YAN Y., LI Y. & KOIDE S.S. 2003. Identification of GABABR2 in Rat Testis and Sperm. J Reprod Dev, 49, 397–402.
He X.B., Hu J.H., Wu Q., Yan Y.C. & Koide S.S. 2001. Identification of GABAB receptor in rat testis and sperm. Biochem Biophys Res Commun, 283, 243–247.
Hu J., He X.B., Wu Q. & Yan Y. 2002. Subunit Composition and Function of GABAA Receptors of Rat Spermatozoa. Neurochem Res, 27, 195–199.
HU J.H., ZHANG J.F., MA Y.H., JIANG J., YANG N., LI X.B., et al. 2004. Impaired reproduction in transgenic mice overexpressing γ-aminobutyric acid transporter I (GAT1). Cell Res, 14, 54–59.
Kanbara K., Okamoto K., Nomura S., Kaneko T., Shigemoto R., Azuma H., et al. 2005. Cellular localization of GABA and GABAB receptor subunit proteins during spermiogenesis in rat testis. J Androl, 26, 485–493.
Li S., Zhang Y., Liu H., Yan Y. & Li Y. 2008. Identification and expression of GABAC receptor in rat testis and spermatozoa. Acta Biochim Biophys Sin (Shanghai), 40, 761–7.
Moreira N., Bernardi M.M. & Spinosa H.S. 2014. Ivermectin reduces sexual behavior in female rats. Neurotoxicol Teratol, 43, 33–8.
Moreira N., Sandini T.M., Reis-Silva T.M., Navas-Suáresz P., Auada A.V.V., Lebrun I., et al. 2017. Ivermectin reduces motor coordination, serum testosterone, and central neurotransmitter levels but does not affect sexual motivation in male rats. Reprod Toxicol, 74, 195–203.
Omura S. 2008. Ivermectin: 25 years and still going strong. Int J Antimicrob Agents, 31, 91–8.
Russell L.D., Ettlin R.A., Hikim A.P.S. & Clegg E.D. 1993. Histological and Histopathological Evaluation of the Testis. Int J Androl, 16, 83–83.
Shaha C. 2007. Modulators of spermatogenic cell survival. Soc Reprod Fertil Suppl, 63, 173–86.
Shaha C., Tripathi R. & Mishra D.P. 2010. Male germ cell apoptosis: regulation and biology. Philos Trans R Soc B Biol Sci, 365, 1501–1515.
Shoop W.L., Mrozik H. & Fisher M.H. 1995. Structure and activity of avermectins and milbemycins in animal health. Vet Parasitol, 59, 139–156.
Soni K.K., Kim H.K., Choi B.R., Karna K.K., You J.H., Cha J.S., et al. 2016. Dose-dependent effects of cisplatin on the severity of testicular injury in Sprague Dawley rats: reactive oxygen species and endoplasmic reticulum stress. Drug Des Devel Ther, Volume 10, 3959–3968.
Stumpp T., Sasso-Cerri E., Freymüller E. & Miraglia S.M. 2004. Apoptosis and testicular alterations in albino rats treated with etoposide during the prepubertal phase. Anat Rec Part A Discov Mol Cell Evol Biol, 279A, 611–622.
Ujah G.A., Nna V.U., Suleiman J.B., Eleazu C., Nwokocha C., Rebene J.A., et al. 2021. Tert-butylhydroquinone attenuates doxorubicin-induced dysregulation of testicular cytoprotective and steroidogenic genes, and improves spermatogenesis in rats. Sci Rep, 11, 5522.
Xu Y.-R., Dong H.-S. & Yang W.-X. 2016. Regulators in the apoptotic pathway during spermatogenesis: Killers or guards? Gene, 582, 97–111.
Yang C.-C. 2012. Acute Human Toxicity of Macrocyclic Lactones. Curr Pharm Biotechnol, 13, 999–1003.
Yao C.-J., Zhao C. & Liu S.-M. 2018. [Mechanisms of the three pathways regulating the apoptosis of testicular germ cells]. Zhonghua Nan Ke Xue, 24, 844–850.
Copyright (c) 2024 Flora Cordeiro, Flaviane L Ceglio, Nathalia A Galvão, Leoni V Bonamin, Eduardo F Bondan, Thiago Berti Kirsten, Maria M Bernardi