1
Assessment of a new microsatellites panel for traceability in Italian inbreed pigs using parentage test
VetIt.1700.8999.4

Keywords

Meat traceability
Parentage test
Pig
Microsatellite
Inbreeding

How to Cite

Chiaverini, A., Lyu, S., Garofolo, G., Di Giannatale, E., & Migliorati, G. (2021). Assessment of a new microsatellites panel for traceability in Italian inbreed pigs using parentage test. Veterinaria Italiana, 57(3). https://doi.org/10.12834/VetIt.1700.8999.4

Abstract

The origin of meat and meat products can be traced by verifying the identity of an offspring from its parents’ genotypes. Although there are many microsatellite panels applicable to swine population, efficiency of parental testing decreases when the population consists of consanguineous animals. The aims of the present study were to develop a new microsatellite panel for traceability using parentage test in inbreed pig population and to assess how hybridization can influence the efficiency of parental testing. A new genotyping assay, based on 20‑microsatellite assay, was performed in 304 individuals consisting of related and unrelated animals. The results showed that the microsatellites used in this study display high level of polymorphism ensuring a parentage assignment of 100%. This genotyping panel can be a useful tool to test a ’parent‑to‑fork’ traceability system based on 20 microsatellite loci and can overcome technical limitations in inbreed population.
https://doi.org/10.12834/VetIt.1700.8999.4
VetIt.1700.8999.4

References

Blasi M., Lanza A., Varlotta C. & Rosati A. 2003. Pig ham genetic traceability. Italian J Animal Sci, 2 (S1), 82-84.

Costa V., Pérez-González J., Santos P., Fernández-Llario P., Carranza J., Zsolnai A., Anton I., Buzgó J., Varga G., Monteiro N. & Beja-Pereira A. 2012. Microsatellite markers for identification and parentage analysis in the European wild boar (Sus scrofa). BMC Res Notes, 5, 479.

European Communities (EC).2002. Regulation (EC) N. 178/2002 of the European Parliament and of the Council of 28 January 2002 laying down the general principles and requirements of food law, establishing the European Food Safety Authority and laying down procedures in matters of food safety. Off J, L 31, 01/02/2002.

Food and Agriculture Organization of the United Nations (FAO). 2011. Molecular genetic characterization of animal genetic resources. FAO Animal Production and Health Guidelines, n.. 9. FAO, Rome. http://www.fao.org/docrep/014/i2413e/i2413e00.pdf

Guastella A.M., Criscione A., Marletta D., Zuccaro A., Chies L. & Bordonaro S. 2010. Molecular characterization and genetic structure of the Nero Siciliano pig breed. Genet Mol Biol, 33( 4), 650-656.

Jamieson A. & Taylor S.T.C.S. 1997. Comparisons of three probability formulae for parentage exclusion. Anim Genet, 28, 397-400.

Kalinowski S.T., Taper M.L. & Marshall T.C. 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol, 16, 1099-1106.

Lin Y.C., Hsieh H.M., Lee J.C.I., Hsiao C.T., Lin D.Y., Linacre A. & Tsai L.C. 2014. Establishing a DNA identification system for pigs using a multiplex STR amplification. Forensic Sci Int Genet, 9, 12-19.

Marshall T.C., Slate J., Kruuk L.E.B. & Pemberton J.M. 1998. Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol, 7, 639-655.

Menéndez J., Álvarez I., Fernández I., de la Roza B. & Goyache F. 2015. Multiple paternity in domestic pigs under equally probable natural matings – a case study in the endangered Gochu Asturcelta pig breed. Arch Anim Breed, 58, 217-220.

Michailidou S., Kalivas A., Ganopoulos I., Stea E., Michailidis G., Tsaftaris A. & Argiriou A. 2014. A multi-farm assessment of Greek black pig genetic diversity using microsatellite molecular markers. Genet Mol Res, 13(2), 2752-2765.

Nechtelberg D., Kaltwasser C., Stur I., Meyer J.N., Brem G., Mueller M. & Mueller S. 2001. DNA microsatellite analysis for parentage control in Austrian pigs. Anim Biotechnol, 12(2), 141-144.

Oh J.D., Song K.D., Seo J.H., Kim D.K., Kim S.H., Seo K.S., Lim H.T., Lee J.B., Park H.C., Ryu Y.C., Kang M.S., Cho S., Kim E.S., Choe H.S., Kong H.S. & Lee H.K.2014. Genetic traceability of black pig meats using microsatellite markers. Asian-Australas J Anim Sci, 27(7),926-931.

Orrù L., Napolitano F., Catillo G. & Moioli B. 2006. Meat molecular traceability: How to choose the best set of microsatellites? Meat Science, 72, 312-317.

Park S.D.E . 2001. Trypanotollerance in West African cattle and population genetic effects of selection. PhD Thesis, University of Dublin, Dublin, Ireland.

Putnová L., Knoll A., Dvořák V. & Dvořák J. 2003. A novel porcine microsatellite panel for the identification of individuals and parentage control in the Czech Republic. Czech J Anim Sci, 48(8), 307–314.

Raymond M. & Rousset F. 1995. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Heredity,86, 248-249.

Scarano D. & Rao R. 2014. DNA Markers for Food Products Autenthication. Diversity , 6, 579-596.

USDA MARC database, http://www.genome.iastate.edu/ pigs/maps/marc.html

(questo andrebbe come nota a piè pagina)

Waits L.P., Luikart G. & Taberlet P. 2001. Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol, 10, 249-256.

Weir B.S. & Cockerham C.C. 1984. Estimating F-Statistics for the Analysis of Population Structure. Evolution, 38 (6), 1358-1370.