Validation of suitable reference genes for quantitative expression analysis by qPCR in bovine terminal ileum and ileocecal valve.
DOI:
https://doi.org/10.12834/VetIt.2607.16055.1Keywords:
Cattle, Normalization, Real-time qPCR, Reference genesAbstract
The use of reference genes is commonly accepted as the most reliable approach to normalize qRT-PCR and to reduce possible errors in the quantification of gene expression. The aim of this study was to identify a set of reference genes suitable for gene expression analysis in the distal portion of small intestine and ileocecal valve in cattle. These sites of intestine are of interest in veterinary science as they are the main sites of inflammation caused by Mycobacterium avium subsp. paratuberculosis, agent of paratuberculosis. We employed ten PCR assays for commonly used reference genes belonging to various functional classes and then determined their expression stability. The most stable genes were RPL13A and HMBS, followed by TFRC and B-ACT. NormFinder analysis provided similar results with B-ACT as the best reference gene, followed by RLP13A and TFRC. This validated gene panel may be useful for studies on paratuberculosis aiming to identify genes differentially expressed by qRT-PCR.
References
Bas A., Forsberg G., Hammarstrom S. & Hammarstrom M.L. 2004. Utility of the housekeeping genes 18S rRNA, beta‑actin and glyceraldehyde‑3‑phosphate‑dehydrogenase for normalization in real‑time quantitative reverse transcriptase‑polymerase chain reaction analysis of gene expression in human T lymphocytes. Scand J Immunol, 59, 566‑573.
Bustin S.A. 2000. Absolute quantification of mRNA using real‑timereverse transcription polymerase chain reaction assays. J Mol Endocrinol, 25, 169‑193.
Bustin S.A., Benes V., Garson J.A., Hellemans J., Huggett J., Kubista M., Mueller R., Nolan T., Pfaffl M.W., Shipley G.L., Vandesompele J. & Wittwer C.T. 2009. The MIQE guidelines: minimum information for publication of quantitative real time PCR experiments. Clin Chem, 55, 611‑622.
Connor E.E., Baldwin VI R.B., Capuco A.V., Evock‑Clover C.M., Ellis S.E. & Sciabica K.S. 2010. Characterization of glucagon‑like peptide 2 pathway member expression in bovine gastrointestinal tract. J Dairy Sci, 93, 5167‑5178.
Coussens P.M. 2001. Mycobacterium paratuberculosis and the bovine immune system. Anim Health Res Rev, 2, 141‑161.
Crookenden M.A., Walker C.G., Kuhn‑Sherlock B., Murray A., Dukkipati V.S.R., Heiser A. & Roche J.R. 2017. Evaluation of endogenous control gene expression in bovine neutrophils by reverse‑transcription quantitative PCR using microfluidics gene expression arrays. J Dairy Sci, 100, 6763‑6771.
De Luca A., Vassalotti G., Pelagalli A., Pero M.E., Squillacioti C., Mirabella N., Lombardi P. & Avallone L. 2015. Expression and localization of aquaporin‐1 along the intestine of colostrum suckling buffalo calves. Anat Histol Embryol, 44, 391‑400.
Dorshorst N.C., Collins M.T. & Lombard J.E. 2006. Decision analysis model for paratuberculosis control in commercialdairy herds. Prev Vet Med, 75, 92‑122.
Hellemans J., Mortier G., De Paepe A., Speleman F. & Vandesompele J. 2007. qBase relative quantification framework and software for management and automated analysis of real‑time quantitative PCR data. Genome Biol, 8, R19.
Hempel R.J., Bannantine J.P. & Stabel J.R. 2016. Transcriptional profiling of ileocecal valve of Holstein dairy cows infected with Mycobacterium avium subsp. paratuberculosis. PLoS ONE, 11 (4), e0153932.
Huggett J., Dheda K., Bustin S. & Zumla A. 2005. Real‑time RT‑PCR normalisation; strategies and considerations. Genes Immun, 6, 279‑284.
Janovick‑Guretzky N.A., Dann H.M., Carlson D.B., Murphy M.R., Loor J.J. & Drackley J.K. 2007. Housekeeping gene expression in bovine liver is affected by physiological state, feed intake, and dietary reatment. J Dairy Sci, 90, 2246‑2252.
Kadegowda A.K.G., Bionaz M., Thering B., Piperova L.S., Erdman R.A. & Loor J.J. 2009. Identification of internal control genes for quantitative polymerase chain reaction in mammary tissue of lactating cows receiving lipid supplements. J Dairy Sci, 92, 2007‑2019.
Lecchi C., Dilda F., Sartorelli P. & Ceciliani F. 2012. Widespread expression of SAA and Hp RNA in bovine tissues after evaluation of suitable reference genes. Vet Immunol and Immunopathol, 145, 556‑562.
Lisowski P., Pierzchała M., Goscik J., Pareek C.S. & Zwierzchowski L. 2008. Evaluation of reference genes for studies of gene expression in the bovine liver, kidney, pituitary, and thyroid. J Appl Genet, 49, 367‑372.
Liu J., Sun Y., Yang C., Zhang Y., Jiang Q., Huang J. & Wang C. 2016. Functional SNPs of INCENP affect semen quality by alternative splicing mode and binding affinity with the target Bta‑miR‑378 in hinese Holstein bulls. PloSONE, 11, e0162730.
McNeill R.E., Miller N. & Kerin M.J. 2007. Evaluation and validation of candidate endogenous control genes for real‑time quantitative PCR studies of breast cancer. BMC Mol Biol, 8, 107.
Mitra T., Bilic I., Hess M. & Liebhart D. 2016. The 60S ribosomal protein L13 is the most preferable reference gene to investigate gene expression in selected organs from turkeys and chickens, in context of different infection models. Vet Res, 47, 105.
Modesto P., Peletto S., Pisoni G., Cremonesi P., Castiglioni B., Colussi S., Caramelli M., Bronzo V., Moroni P. & Acutis P.L. 2013. Evaluation of internal reference genes for quantitative expression analysis by real‑time reverse transcription‑PCR in somatic cells from goat milk. J Dairy Sci, 96, 7932‑7944.
Peletto S., Bertuzzi S., Campanella C., Modesto P., Maniaci M.G., Bellino C., Ariello D., Quasso A., Caramelli M. & Acutis P.L. 2011. Evaluation of internal reference genes for quantitative expression analysis by real‑time PCR in ovine whole blood. Int J Mol Sci, 12, 7732‑7747.
Pérez R., Tupac‑Yupanqui I. & Dunner S. 2008. Evaluation of suitable reference genes for gene expression studies in bovine muscular tissue. BMC Mol Biol, 9, 79.
Reist M., Pfaffl M.W., Morel C., Meylan M., Hirsbrunner G., Blum J.W. & Steiner A. 2003. Quantitative mRNA analysis of eight bovine 5‑HT receptor subtypes in brain, abomasum, and intestine by real‐time RT‐PCR. J Recept Signal Transduct Res, 23, 271‑287.
Rekawiecki R., Rutkowska J., & Kotwica J. 2012. Identification of optimal housekeeping genes for examination of gene expression in bovine corpus luteum. Reprod Biol, 12, 362‑367.
Robinson T.L., Sutherland I.A., & Sutherland J. 2007. Validation of candidate bovine reference genes for use with real‑time PCR. Vet Immunol and Immunopathol, 115, 160‑165.
Sahu A.R., Wani S.A., Saxena S., Rajak K.K., Chaudhary D., Sahoo A.P., Khanduri A., Pandey A., Mondal P., Malla W.A., Khan R.I.N., Tiwari A.K., Mishra B., Muthuchelvan D., Mishra B.P., Singh R.K. & Gandham R.K. 2018. Selection and validation of suitable reference genes for qPCR gene expression analysis in goats and sheep under Peste des petits ruminants virus (PPRV), lineage IV infection. Sci Rep, 8, 15969.
Thellin O., Zorzi W., Lakaye B., De Borman B., Coumans B., Hennen G., Grisar T., Igout A. & Heinen E. 1999. Housekeeping genes as internal standards: use and limits. J Biotechnol, 75, 291‑295.
Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A. & Speleman F. 2002. Accurate normalization of real‑time quantitative RT‑PCR data by geometric averaging of multiple internal control genes. Genome Biol, 3, research0034‑1.
Vorachek W.R., Bobe G. & Hall J.A. 2013. Reference gene selection for quantitative PCR studies in bovine neutrophils. Advances in Bioscience and Biotechnology, 4, 6.
Weber K.L., Welly B.T., Van Eenennaam A.L., Young A.E., Porto‑Neto L.R., Reverter A. & Rincon G. 2016. Identification of gene networks for residual feed intake in Angus cattle using genomic prediction and RNA‑seq. PLoS ONE, 11, e0152274.